Synthesis and reactions of [(($\left(\eta^{6}\right)$-2-acylaryl)-C,O) tetracarbonylmanganese]tricarbonylchromium complexes: enhancement of diastereoselection during cyclopentaannulation

George R. Clark, Michael R. Metzler, Giles Whitaker, Paul D. Woodgate *
Department of Chemistry, University of Auckland, Private Bag 92019. Auckland, New Zealand

Received 26 July 1995

Abstract

Cyclomanganation reactions of $\left[\left(\eta^{6}\right)\right.$-acylaryl]tricarbonylchromium complexes have been investigated. Three novel heterobimetallic complexes have been synthesised in moderate to good yield, with one being characterised by X-ray crystallography. Several modes of activating these bimetallic complexes towards coupling reactions with substituted alkenes and alkynes were investigated, including oxidative decarbonylation at room temperature, and thermal promotion. The stereochemistry of one of the cyclopentaannulated adducts has been established by X-ray crystallography. Thermal displacement of one of the CO ligands of the bimetallic complex 27 in the presence of PPh_{3} afforded a single adduct, the structure of which was established by X-ray crystallography. The chemistry of this novel bimetallic system was investigated.

Keywords: Manganese; Carbonyl; Chromium; Crystal structure; Cyclopentaannulation; Stereoselection

1. Introduction

The synthesis and chemistry of bimetallic complexes is a research area that is currently very active. The complexes may be expected to exhibit interesting spectroscopic or structural features owing to possible interaction between the two metal centres. Moreover, coordination of two different metals to a single hydrocarbon may activate the ligand in a cooperative fashion which would allow novel synthetic transformations in high diastereoselectivity. Bimetallic complexes containing a $\mathrm{Cr}(\mathrm{CO})_{3}$ unit and group 14 elements (Si, Ge and Sn) σ-bound to the aromatic ring have been prepared by Poeth et al. [1]. Hunter and co-workers [2,3] have synthesised biphenyl-, terphenyl-, naphthalene- and an-thracene-bridged bi- and tri-metallic complexes of iron and chromium in which $\mathrm{Cr}(\mathrm{CO})_{3}$ is η^{6}-bound to the aryl ligand and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ groups are directly σ-bound to the aromatic rings. These complexes were synthesised by thermal treatment of the appropriate

[^0]acyl-bridged iron complexes with an excess of $\mathrm{Cr}(\mathrm{CO})_{6}$, resulting in coordination of chromium and decarboxylation, leaving the iron atom(s) directly bonded to the aromatic ring(s). Benzene-bridged heterobimetallic complexes containing both σ-bound gold and σ-bound titanium have been reported by Lotz and co-workers [4]; they have also prepared bimetallic complexes of chromium and manganese with bridging σ, π-benzene and benzoyl ligands [5]. These acyl-bridged compounds were prepared by reacting lithiated (η^{6}-arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes with bromopentacarbonylmanganese. Heterobimetallic complexes of thiophene containing both σ bound Mn and $\eta^{6}-\mathrm{Cr}$ have also been reported [6,7]. To our knowledge, a bimetallic complex of benzoquinoline in which the Mn is N -bound is the only reported example of an ortho manganated (η^{6}-arene)tricarbonylchromium complex [8]. This complex was prepared in low yield by ortho manganation of the η^{6}-tricarbonylchromium complex of benzoquinoline with $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$.

The synthesis and chemistry of (η^{6}-arene) tricarbonylchromium complexes [9] and of ortho man-

	R^{1}	R^{2}			
1	H	H	$5(97 \%)$	$9(67 \%)$	$13(76 \%)$
2	Me	H	$6(89 \%)$	$10(49 \%)$	$14(76 \%)$
3	Et	H	$7(98 \%)$	$11(68 \%)$	$15(89 \%)$
4	Me	OMe	$8(78 \%)$	$12(77 \%)$	$16(95 \%)$

Scheme 1.
ganated aryl ketones [10-20] has been well studied. However, the effect of combining these coordinated metal systems with a view to obtaining enhanced diastereoselectivity in insertion-cyclisation sequences leading to cyclopentaannulation has not been investigated previously. Given that alkene or alkyne insertion
could still be induced in an electron-poor heptacarbonyl bimetallic complex, then the cyclisation step to give a 1 -indanol should be controlled stereochemically by the desire of the larger incipient $\mathrm{C}-1$ substituent to be anti to the $\mathrm{Cr}(\mathrm{CO})_{3}$ group. The present work was undertaken to investigate this possibility. Since either the bimetallic

Table 1
Products from complexation reactions of $13,14,15$ and 16 with $\mathrm{PhCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$

Reagent (g)	$\mathrm{PhCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{~g})$	Solvent, ml	Time	Products (\%)	
Complex 13				13	25
0.10	0.15	heptane, 10	30 min	60	0
0.10	0.45	octane, 10	30 min	50	0
0.10	0.15	heptane, 10	1.0 h	40	0
Complex 14				14	26
0.50	0.67	heptane, 55	45 min	86	2
0.50	0.92	heptane, 50	1.5 h	46	30
0.50	0.79	heptane, 50	2.0 h	54	34
0.50	0.79	heptane, 50	2.5 h	42	32
1.10	1.75	heptane, 110	2.0 h	58	22
0.87	1.16	heptane, 40	1.5 h	43	38
0.87	1.16	cyclohexane, 40	3.75 h	79	5
0.10	0.14	acetonitrile, 5	2.0 h	80	0
Complex 15				15	27
0.50	0.64	heptane, 50	2.0 h	42	53
0.50	0.64	heptane, 100	1.5 h	92	5
0.87	1.10	heptane, 40	1.5 h	48	45
0.87	1.10	heptane, 40	4.0 h	31	68
0.87	1.10	heptane, 40	2.0 h	31	64
0.87	1.10	cyclohexane, 40	2.0 h	54	45
Complex 16				16	28
0.10	0.12	heptane, 10	1.5 h	60	18
0.10	0.18	heptane, 20	2.0 h	53	19
0.10	0.06	heptane, 12	4.5 h	25	1
0.20	0.24	heptane, 20	1.0 h	84	8
0.10	0.12	heptane, 10	35 min	36	32
0.10	0.12	heptane, 10	17 min	83	6
0.50	0.10	heptane, 32	30 min	94	2
0.05	0.06	DMF, 5	2.5 h	70	0
0.10	0.12	1,2-dichloroethane, 15	2.0 h	85	0
0.10	0.12	dibutyl ether-heptane, 15	1.0 h	60	0

complex or an $\left(\eta^{6}-\mathrm{Cr}(\mathrm{CO})_{3}\right)$ 1-indanol product could be optically resolved, the diastereoselectivity induced in the cyclisation step could be transformed into enantioselectivity in the decomplexed cyclopentaannulated ligand.

2. Results and discussion

A number of $\left[\left(\eta^{6}\right)\right.$-acylaryl]tricarbonylchromium complexes were synthesised in a three step reaction sequence from their parent aryl ketones via their dioxolane derivatives, in the yields indicated (Scheme 1) [21].

It has been suggested [12,22] that, as an empirical guide, carbonyl-containing substrates with $\nu_{\max }(\mathrm{C}=\mathrm{O})$ $<1700 \mathrm{~cm}^{-1}$ should be amenable to cyclomanganation, with the additional requirement that an sp^{2} carbon be ortho to the organic carbonyl group to enable σ
bonding to the manganese. Complexes $13,14,15$ and 16 all satisfy this requirement, $\nu_{\max }(\mathrm{C}=\mathrm{O})$ being observed between $1682-1689 \mathrm{~cm}^{-1}$. Optimised conditions for ortho manganation of a number of acylarenes involve refluxing a solution of the aromatic compound with $\mathrm{PhCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$ (1.2 molar equiv.) in heptane (30 $\mathrm{ml} / 0.2 \mathrm{~g}$ of ligand) for $1-6 \mathrm{~h}$ under positive nitrogen pressure [16]. In the present work, treatment of the tricarbonylchromium complexes $13,14,15$ and 16 under a variety of conditions afforded the product distributions summarised in Table 1.

For ligands 14, 15 and 16, optimised yields for the corresponding bimetallic complexes of 26 (38%), 27 (68%) and 28 (32%) were obtained under conditions similar to those reported [16]. In all three cases a typical reaction initially formed a bright red solution, with significant precipitation developing after about 5 min of heating under reflux. As the reaction proceeded, more precipitate formed. Several attempts were made to

Table 2
Crystal data and structure refinement for 26 and 29

	26	29
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{CrMnO}_{8}$	$\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{CrMnO}_{7} \mathrm{P}$
Formula weight	422.15	670.43
Temperature (K)	293(2)	293(2)
Wavelength (\AA)	0.710694	0.71069
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / n$
Unit cell dimensions (\AA)	$a=14.204$ (3)	$\mathrm{a}=14.751$ (6)
	$b=7.369$ (3)	$b=14.168$ (5)
	$c=16.482(4)$	$c=16.320(2)$
	$\alpha=90^{\circ}$	$\alpha=90^{\circ}$
	$\beta=111.67(2)^{\circ}$	$\beta=115.53(2)^{\circ}$
	$\gamma=90^{\circ}$	$\gamma=90^{\circ}$
Volume (\AA^{3})	1603.2(8)	3078(2)
Z	4	4
Density (calculated ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.749	1.447
Absorption coefficient (mm^{-1})	1.506	0.862
$F(000)$	840	1368
Crystal size (mm)	$0.18 \times 0.23 \times 0.28$	$0.45 \times 0.25 \times 0.25$
θ range for data collection	1.62 to 27.01°	1.56 to 24.99°
Index ranges	$-18 \leq h \leq 16$	$-15 \leq h \leq 17$
	$-9 \leq k \leq 0$	$-16 \leq k \leq 0$
	$0 \leq 1 \leq 20$	$-19 \leq l \leq 0$
Reflections collected	3743	5599
Independent reflections	$3491[R(\mathrm{int})=0.0289]$	$5400[R(\mathrm{int})=0.0555]$
Refinement method	Full-matrix least squares on F^{2}	Full-matrix least squares on F^{2}
Data/Restraints / Parameters	$3491 / 0 / 254$	5400/0/407
Goodness-of-fit on F^{2}	1.032	0.988
Final R indices [$1>2 \sigma(1)]$	$R 1=0.0318$	$R 1=0.0572$
	$w R 2=0.0713$	$w R 2=0.1188$
R indices (all data)	$R 1=0.0637$	$R=0.1826$
	$w R 2=0.0847$	$w R 2=0.1608$
Largest difference max. (e \AA^{-3})	0.287	0.378
Largest difference min. (e \AA^{-3})	-0.307	-0.478
$\omega=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)^{2}+(a P)^{2}+b P\right]$	$a=0.0371$	$a=0.0613$
	$b=0.85$	$b=0.76$
Number of observed reflections $[1>2 \sigma(I)]$	2512	2491

Scheme 2.

maintain a homogeneous mixture by employing a number of alternative solvents and co-solvents (DMF, acetonitrile, 1,2-dichloroethane, dibutyl ether, cyclohexane). The only solvent apart from heptane that gave limited success was cyclohexane, which afforded the bimetallic complex 27 in 45% yield after 4 h . Several attempts were made to isolate and identify the precipitate which formed during the course of reaction. Unfortunately, however, the material proved to be too unstable for ${ }^{1} \mathrm{H}$ NMR analysis, giving only very broad signals. The infrared spectrum of the crude precipitate showed a number of $\nu_{\max } 1950-1800 \mathrm{~cm}^{-1}$, consistent with metal $\mathrm{C} \equiv \mathrm{O}$ absorptions. Attempted purification by chromatography on either silica gel or alumina resulted in decomposition of the material.

The data reported in Table 1 show that ortho manganation of [$\left(\eta^{6}\right)$-acylaryl]tricarbonylchromium complexes is a very sensitive process, the yields being affected by concentration, solvent, and reaction time. The optimum reaction conditions for formation of the heterobimetallic compounds involve heating a concentrated solution of the starting tricarbonylchromium complex ($100 \mathrm{mg} / 5$ ml of heptane) with a slight excess of $\mathrm{PhCH}_{2} \mathrm{Mn}(\mathrm{CO})_{5}$

Fig. 1. The atomic arrangement in 26.

Table 3
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $26 ; U_{\text {eq }}$ is defined as one third of the trace of the orthogonalised $U_{i j}$ tensor

Atom	x	y	z	$U_{\text {eq }}$
Mn	$5325(1)$	$2093(1)$	$2082(1)$	$37(1)$
Cr	$2526(1)$	$156(1)$	$903(1)$	$35(1)$
$\mathrm{O}(1)$	$4781(1)$	$3493(3)$	$925(1)$	$43(1)$
$\mathrm{O}(2)$	$3829(2)$	$-3120(3)$	$1477(2)$	$70(1)$
$\mathrm{O}(3)$	$2525(2)$	$-348(5)$	$-900(2)$	$80(1)$
$\mathrm{O}(4)$	$755(2)$	$-2371(4)$	$488(2)$	$86(1)$
$\mathrm{O}(5)$	$7488(2)$	$2935(4)$	$2398(2)$	$75(1)$
$\mathrm{O}(6)$	$5773(2)$	$-270(4)$	$3608(2)$	$78(1)$
$\mathrm{O}(7)$	$5383(2)$	$-1116(4)$	$981(2)$	$73(1)$
$\mathrm{O}(8)$	$5209(2)$	$5180(4)$	$3213(2)$	$76(1)$
$\mathrm{C}(1)$	$3801(2)$	$1927(4)$	$1801(2)$	$33(1)$
$\mathrm{C}(2)$	$3232(2)$	$2854(4)$	$1015(2)$	$35(1)$
$\mathrm{C}(3)$	$2151(2)$	$3074(4)$	$720(2)$	$44(1)$
$\mathrm{C}(4)$	$1642(2)$	$2328(5)$	$1216(2)$	$47(1)$
$\mathrm{C}(5)$	$2178(2)$	$1358(5)$	$1978(2)$	$47(1)$
$\mathrm{C}(6)$	$3230(2)$	$1160(4)$	$2259(2)$	$40(1)$
$\mathrm{C}(7)$	$3949(2)$	$3603(4)$	$555(2)$	$39(1)$
$\mathrm{C}(8)$	$3400(3)$	$4498(6)$	$-317(2)$	$56(1)$
$\mathrm{C}(9)$	$3324(2)$	$-1858(4)$	$12541(2)$	$45(1)$
$\mathrm{C}(10)$	$1425(2)$	$-1385(5)$	$637(2)$	$53(1)$
$\mathrm{C}(11)$	$2509(2)$	$-142(5)$	$-216(2)$	$48(1)$
$\mathrm{C}(12)$	$5257(2)$	$4060(5)$	$2762(2)$	$48(1)$
$\mathrm{C}(13)$	$6663(2)$	$2613(5)$	$2259(2)$	$48(1)$
$\mathrm{C}(14)$	$5350(2)$	$68(5)$	$1398(2)$	$45(1)$
$\mathrm{C}(15)$	$5623(2)$	$667(5)$	$3016(2)$	$51(1)$

(1.2 molar equiv.) for about 2 h under positive nitrogen pressure.
[(($1,2,3,4,5,6-\eta)-2$-Acetylphenyl)-C,O)tetracarbonylmanganese]tricarbonylchromium (26) crystallised from diethyl ether as red rods and showed six $\mathrm{C} \equiv \mathrm{O}$ stretching absorptions in its infrared spectrum (2093, 2010, 1965, 1037, 1894 and $1866 \mathrm{~cm}^{-1}$). It analysed correctly for $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{CrMnO}_{8}$ and showed a molecular ion at $m / z 422$ in the mass spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two sets of triplet \times doublets and broadened doublets, at $\delta 5.5-6.0 \mathrm{ppm}$, consistent with ortho disubstitution on the aromatic ring. The 2 ppm upfield shift relative to the free ligand is also consistent with the retention of the $\mathrm{Cr}(\mathrm{CO})_{3}$ complexed system. A single crystal X-ray structure analysis of $\mathbf{2 6}$ was undertaken in order to investigate the spatial arrangement of the ligands about the manganese moeity (Fig. 1, Tables 2-4).

Treatment of 14 in refluxing heptane also afforded a number of side products of which only hexacarbonyl[μ ($\eta^{6}:^{6}$-2,4-diphenylbut-2-en-3-one)]dichromium (30) could be isolated pure. This compound crystallised as bright red rods, analysed correctly for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{MnO}_{7}$, and showed a molecular ion at $m / z 494$ in the mass spectrum. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with the proposed structure. This homobimetallic complex is clearly the result of an aldol condensation reaction between two molecules of 14.

The expected anti disposition of the $\mathrm{Cr}(\mathrm{CO})_{3}$ groups was confirmed by a single crystal X-ray diffraction experiment (Figs. 2 and 3, Tables 5-7).

Attempted cyclomanganation of (η^{6}-benzaldehyde)tricarbonylchromium (13) did not give rise to any bimetallic derivatives, or to any other identifiable complexes. Although some of the starting material clearly decomposed as the reaction proceeded, significant amounts of 13 were recovered after work-up. This observation is similar to that observed by Cambie et al. [16] who reported that direct ortho manganation of non-complexed substituted benzaldehydes afforded mixtures, only low yields of the expected tetracarbonylmanganese derivatives being generated. These low yields were attributed more to the susceptibility of the CHO group towards side reactions rather than to the inherent inability of the ortho manganated complex to form.

In an attempt to increase the solubility of the starting [$\left(\eta^{6}\right)$-acylaryl]tricarbonylchromium ligands in non-polar solvents such as heptane, a series of derivatives were prepared in which a CO ligand was replaced with either $\mathrm{Ph}_{3} \mathrm{P}$ (18) (19), or $\mathrm{Bu}_{3} \mathrm{P}(20)$, or ($\left.\mathrm{O}^{i} \mathrm{Pr}\right)_{3} \mathrm{P}$ (21). Pho-tolytically-promoted displacement of CO ligands by $\mathrm{R}_{3} \mathrm{P}$ is a facile process and is well documented in the literature [23]. Thus, treatment of the precursor tricarbonylchromium complex with $\mathrm{R}_{3} \mathrm{P}$ (1.2 molar equiv.) in cyclohexane-diethyl ether under irradiation for 2 h gave the $\mathrm{R}_{3} \mathrm{P}$-containing adducts 18 (40%) [24], 10 (69%), 20 (55%), and 21 (62%).

Attempted ortho manganation of 18, 19, 20 or 21 using the optimum conditions established earlier led only to the formation of small amounts of chromium-free arene, unreacted starting η^{6} complex making up most of the recovered material. That is, although 18-21 were easily soluble in heptane as anticipated, the coordination
of a phosphine ligand significantly decreased the rate of the desired cyclomanganation reaction.

Coupling reactions of ortho manganated complexes with alkenes or alkynes have been reported extensively in the literature [10-20]. There are three main methods of activating simple tetracarbonylmanganese complexes towards coupling reactions with unsaturated hydrocarbons. Firstly, transmetallation with lithium tetrachloropalladate, followed by reaction with a suitably substituted alkene gives the expected Heck-type insertion product, generally in very good yield [10]. Secondly, oxidative activation of aryltetracarbonylmanganese complexes by treatment with $\mathrm{Me}_{3} \mathrm{NO}$ in acetonitrile to effect decarbonylation (as CO_{2}), followed by insertion of an alkene [18] or alkyne [14,19] and cyclisation involving a suitable ortho substituent may lead directly to indanols or indenols in a one-pot reaction sequence. Thirdly, thermally-promoted decarbonylation in a suitable solvent (usually benzene) can lead to the corresponding indanols and indenols in excellent yields [14,18,19].

One of the aims of this project was to study the influence of the $\eta^{6} \mathrm{Cr}(\mathrm{CO})_{3}$ unit on the stereoselection during formation of the isomeric 1 -indanol products resulting from an insertion-cyclisation sequence involving carbon-manganese bonds. It was anticipated that the $\mathrm{Cr}(\mathrm{CO})_{3}$ tripod would favour the formation of some diastereoisomers over others. Since an initial transmetallation would replace the σ-bound manganese, only the oxidative or thermal activation methods were suitable pathways for this sequence.

In the event, treatment of the heterobimetallic complexes 26 and 27 with methyl propenoate in refluxing benzene for 24 h afforded the products shown in Scheme 3. A small amount of benzenetricarbonylchromium (17)

Fig. 2. The atomic arrangement in 30.

Fig. 3. The atomic arrangement in 30.
(3-5\%) was also isolated from both reactions. Clearly, this compound has formed via transfer of ${ }^{\prime} \mathrm{Cr}(\mathrm{CO})_{3}$ ' from the starting complex to the solvent medium. This type of intermolecular transfer is well documented in the literature [25].

Complex 26 afforded the product of cyclisation followed by dehydration, indene 48 (26%), together with a small amount of demanganated starting material, 14 (13%). The cyclised 1 -indanol complexes were isolated after chromatography as an inseparable mixture (4:1,

(22, $\mathrm{RI}^{2}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
23, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}$ $24, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}$)

(18, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{PPh}_{3}$
19. $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{PPh}_{3}$
20. $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{PBu} \mathbf{3}_{3}$

21, $\left.\mathrm{R}^{\mathbf{1}}=\mathrm{Me}, \mathrm{R}^{\mathbf{2}}=\mathrm{OMe}, \mathrm{R}^{\mathbf{3}}=\mathrm{P}\left(\mathrm{O}_{\mathrm{OF}}\right)_{3}\right)$

(32, $\mathrm{R}^{1}=\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$ 33, $\mathrm{R}^{1}=\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{2}=\mathrm{H}$ 34, $\mathrm{R}^{\mathbf{1}}=\mathrm{Et}, \mathrm{R}^{\mathbf{2}}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$)

(31)
$56 \%)$ of two diastereoisomers. The major stereoisomer was then purified by repetitive crystallisation from diethyl ether as yellow rod-shaped crystals. The stereochemistry of this complex was established by single crystal X-ray analysis, which showed it to be the α diastereoisomer 36 (Fig. 4, Tables 5, 8 and 9). The structure of the minor product was assigned as 38 . The relative stereochemistry at C 1 and C 2 of $\mathbf{3 8}$ was established by decomplexation (diethyl ether, $h \nu, \mathrm{O}_{2}$) and comparison of the NMR data of the resulting free ligand (assigned as 41) with that obtained when complex 36 was decomplexed to give $\mathbf{4 0}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 40 showed the $1-\mathrm{CH}_{3}$ resonance at $\delta 1.76$ ppm and the methyl ester resonance at $\delta 3.78 \mathrm{ppm}$, whereas in stereoisomer 41 these signals were observed at $\delta 1.38 \mathrm{ppm}$ and at $\delta 3.81 \mathrm{ppm}$ respectively. These spectral data led directly to the indicated assignments. The observed relative chemical shift values are in good agreement with those reported [18] for pairs of isomeric 1 -indanols formed from $\mathrm{Mn}(\mathrm{CO})_{4}$ complexes derived from podocarpic acid. Owing to significant overlap of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathbf{3 6}, \mathbf{3 8})$ the stereochemistry of the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit in the minor product 38 could not be assigned.

Similarly, complex 27 afforded 51 (16%), 15 (2%), 37 (59\%), and 39 (3\%) (Scheme 3). Also isolated from this reaction was tricarbonyl[$(3 \mathrm{a}, 3,4,5,6,7,7 \mathrm{a}-\eta)-3$ -ethyl-1 H-indenelchromium (49) (12%). This yellow oil

(40, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Mc}$
(50)

41, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
42, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}$
43, $\mathrm{R}^{\mathrm{I}}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
$44, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CMe}_{3}$
45, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{3}=\mathrm{H}$
46, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CMe}_{3}$
47, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{3}=\mathrm{H}$)

(52, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Ph}$ 53, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{4}=\mathrm{Me}$ 54, $\mathrm{Rl}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{4}=\mathrm{Me}$
$55, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Ph}$
56, $R^{1}=R^{2}=R^{3}=H, R^{4}=E t$
57, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{4}=\mathrm{Et}$
58, $\mathrm{R}^{\mathrm{t}}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{4}=\mathrm{Et}$
59, $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{4}=\mathrm{Et}$
60, $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{4}=\mathrm{Me}$
61, $\mathrm{R}^{\mathrm{l}}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{E}$)

Table 4
Bond lengths (\AA) and angles (deg) for 26

Mn-C(15)	1.781(3)	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(1)$	115.47(12)
Mn-C(13)	1.853(3)	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(1)$	154.87(12)
$\mathrm{Mn}-\mathrm{C}(12)$	$1.856(3)$	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(5)$	66.84(10)
$\mathrm{Mn}-\mathrm{C}(14)$	$1.878(3)$	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(2)$	36.96(9)
$\mathrm{Mn}-\mathrm{C}(1)$	2.043 (3)	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(3)$	67.98(10)
$\mathrm{Mn}-\mathrm{O}(1)$	2.052(2)	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(4)$	79.50 (10)
$\mathrm{Cr}-\mathrm{C}(9)$	$1.825(3)$	$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(6)$	36.69(9)
$\mathrm{Cr}-\mathrm{C}(11)$	$1.849(3)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{Mn}$	117.2(2)
$\mathrm{Cr}-\mathrm{C}(10)$	$1.850(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	122.6(2)
$\mathrm{Cr}-\mathrm{C}(5)$	2.194(3)	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(7)$	114.0(2)
$\mathrm{Cr}-\mathrm{C}(2)$	2.204(3)	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(7)$	123.5(3)
$\mathrm{Cr}-\mathrm{C}(3)$	$2.209(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cr}$	74.4(2)
$\mathrm{Cr}-\mathrm{C}(4)$	$2.209(3)$	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{Cr}$	71.2(2)
$\mathrm{Cr}-\mathrm{C}(6)$	2.211 (3)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{Cr}$	129.7(2)
$\mathrm{Cr}-\mathrm{C}(1)$	$2.279(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	115.6(2)
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.239(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Mn}$	132.2(2)
$\mathrm{O}(2)-\mathrm{C}(9)$	$1.152(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mn}$	112.1(2)
$O(3)-\mathrm{C}(11)$	1.146 (3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cr}$	69.0(2)
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.149(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cr}$	68.7(2)
$\mathrm{O}(5)-\mathrm{C}(13)$	1.133(4)	$\mathrm{Mn}-\mathrm{C}(1)-\mathrm{Cr}$	134.70(12)
$O(6)-C(15)$	$1.149(4)$	C(5)-C(6)-C(1)	122.4(3)
$O(7)-C(14)$	1.122(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}$	70.8(2)
$\mathrm{O}(8)-\mathrm{C}(12)$	$1.130(4)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{Cr}$	74.3(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.423(4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.7(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.439(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}$	72.1(2)
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.461(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cr}$	72.0(2)
C(1)-C(6)	1.414 (4)	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(3)$	115.16(13)
C(5)-C(6)	$1.399(4)$	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(3)$	66.58(13)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.401(5)$	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	38.06(10)
C(3)-C(4)	1.389 (4)	$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(4)$	149.39(13)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.494(4)	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(4)$	121.29(14)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(13)$	94,77(14)	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(4)$	89.81(13)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(12)$	89.3(2)	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(4)$	37.11(12)
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{C}(12)$	91.27(13)	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(4)$	66.88(11)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(14)$	89.9(2)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(4)$	36.64(11)
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{C}(14)$	90.78(13)	$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(6)$	88.05(13)
$\mathrm{C}(12)-\mathrm{Mn}-\mathrm{C}(14)$	177.88(13)	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(6)$	151.92(12)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(1)$	93.15(12)	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(6)$	118.18(12)
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{C}(1)$	170.77(13)	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(6)$	37.02(11)
$\mathrm{C}(12)-\mathrm{Mn}-\mathrm{C}(1)$	84.09(11)	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(6)$	65.90(10)
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{C}(1)$	93.96(11)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(6)$	78.97(12)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{O}(1)$	171.02(11)	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(6)$	66.79(12)
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{O}(1)$	93.15(11)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.1(3)
$\mathrm{C}(12)-\mathrm{Mn}-\mathrm{O}(1)$	94.72(12)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cr}$	71.7(2)
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{O}(1)$	85.72(12)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cr}$	70.9(2)
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{O}(1)$	79.34(9)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	118.6(3)
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(11)$	89.15(14)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Cr}$	$71.7(2)$
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(10)$	87.1(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Cr}$	70.8(2)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(10)$	89.55(14)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	117.1(2)
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(5)$	112.46(13)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	120.0(3)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(5)$	158.38(14)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	122.8(3)
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(5)$	90.95(13)	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{Cr}$	178.1(3)
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(2)$	119.69(12)	$\mathrm{O}(4) \mathrm{C}(10)-\mathrm{Cr}$	178.3(3)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(2)$	91.62(13)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{Cr}$	178.1(3)
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(2)$	153.22(13)	$\mathrm{O}(8)-\mathrm{C}(12)-\mathrm{Mn}$	175.6(3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(5)$	78.44(11)	$\mathrm{O}(5)-\mathrm{C}(13)-\mathrm{Mn}$	177.7(3)
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(3)$	157.56(12)	$\mathrm{O}(7)-\mathrm{C}(14)-\mathrm{Mn}$	178.0(3)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(3)$	93.75(14)	$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{Mn}$	177.1(3)
$\mathrm{C}(9)-\mathrm{Cr}-\mathrm{C}(1)$	90.70(12)		

showed a molecular ion at $m / z 280$ in the mass spectrum, accurate mass measurement of which was correct for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CrO}_{3}$. The absence of a methyl reso-
nance at $\delta 3.8 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, and of an absorption due to an ester carbonyl in the infrared spectrum, confirmed that decarbonylation had occurred. Decomplexation of 49 in diethyl ether- $h \nu-\mathrm{O}_{2}$ afforded 56 as a clear oil, the molecular ion of which had a correct accurate mass measurement for $\mathrm{C}_{11} \mathrm{H}_{12}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this compound was in very good agreement with that published for the congener, 3-methylindene [26,27].

Also isolated from reaction of 27 with methyl propenoate was tricarbonyl[methyl($1,2,3,4,5,6-\eta$)-4-methyl-5-oxo-5-phenylpentanoate]chromium (35), as a mixture with 15 and the two 1 -indanol complexes 37 and 39. Photolytically-induced decomplexation afforded methyl 4-methyl-5-oxo-5-phenylpentanoate (32) (1\%) as a clear oil. Accurate mass measurement of the molecular ion of 32 was correct for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$, and the infrared spectrum showed two carbonyl absorption
bands, due to an ester and to a benzylic ketone (1736 and $1682 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were also consistent with the structure.

In order to determine whether the heterobimetallic complexes afforded better chemical yields (alkenes, alkynes) and / or enhanced stereocontrol (alkenes) during the formation of the cyclised insertion products (indenol/indanol), a comparative study was undertaken, the results of which are listed in Table 10. Thermally-promoted reactions of the aryltetracarbonylmanganese complex 24 with disubstituted symmetrical alkynes ($\mathrm{PhC} \equiv \mathrm{CPh}, \mathrm{EtC} \equiv \mathrm{CEt}$) generally gave very high chemical yields (92%) of the insertion-cyclisation products 55 and 61. This is much higher than the yields (25%) of indenols isolated from similar reactions of the heterobimetallic complexes 26 and 27. Insertion of phenylacetylene was unprofitable for both the monoand bi-metallic systems, complicated mixtures of prod-

Table 5
Crystal data and structure refinement for 30 and 36

	30	36
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{7}$	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{CrO}_{6}$
Formula weight	494.35	553.20
Temperature (K)	193(2)	193(2)
Wavelength (\AA)	0.71069	0.71069
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$	C_{2} / c
Unit cell dimensions (\AA)	$a=7.214(6)$	$a=13.207$ (6)
	$b=10.563(5)$	$b=10.099(7)$
	$c=13.984$ (7)	$c=21.554(6)$
	$\alpha=104.17(4)^{\circ}$	$\alpha=90^{\circ}$
	$\beta=100.86(5)^{\circ}$	$\beta=100.33(3)^{\circ}$
	$\gamma=100.30(5)^{\circ}$	$\gamma=90^{\circ}$
Volume (\AA^{3})	986.0(11)	2828(3)
Z	2	8
Density (calculated) $\mathrm{Mg} \mathrm{m}^{-3}$)	1.665	1.608
Absorption coefficient (mm^{-1})	1.146	0.836
$F(000)$	500	1408
Crystal size (mm)	$0.25 \times 0.35 \times 0.37$	$0.23 \times 0.38 \times 0.25$
θ range for data collection	1.55 to 26.97°	1.92 to 29.98°
Index ranges	$-9 \leq h \leq 0$	$0 \leq h \leq 18$
	$-13 \leq k \leq 13$	$-8 \leq k \leq 14$
	$-17 \leq l \leq 17$	$-30 \leq l \leq 29$
Reflections collected	4675	4864
Independent reflections	4272 [$R(\mathrm{int})=0.0232$]	$4119[R(\mathrm{int})=0.0546]$
Refinement method	Full-matrix least squares on F^{2}	Full-matrix least squares on F^{2}
Data/Restraints/Parameters	4271/0/336	4119/0/205
Goodness-of-fit on F^{2}	0.813	1.000
Final R indices [$I>2 \sigma(I)$]	$R=0.0382$	$R 1=0.0357$
	$w R 2=0.1066$	$w R 2=0.0911$
R indices (all data)	$R 1=0.0509$	$R 1=0.0591$
	$w R 2=0.1197$	$w R 2=0.1022$
Largest difference max. (e \AA^{-3})	0.798	0.418
Largest difference min. (e \AA^{-3})	-0.760	-0.474
$\omega=1 /\left[\sigma^{2}\left(F_{0}\right)^{2}+(a P)^{2}+b P\right]$	$a=0.990$	$a=0.0648$
	$b=1.56$	$b=0.06$
Number of observed reflections $[I>2 \sigma(I)]$	3561	3131

ucts being formed in both reactions. This result is attributed to the reactivity of the acidic hydrogen of $\mathrm{PhC} \equiv \mathrm{CH}$.

In contrast, thermally-promoted coupling not only of 24 but also of 26 and 27 with monosubstituted alkenes, in particular with those having an electron-withdrawing substituent, in general gave very good chemical yields ($70-95 \%$) of the insertion-cyclisation product. However, the use of electron-donating substituted alkenes led either to complicated mixtures (triethoxyvinylsilane) or to recovery of decomplexed starting material (vinyl acetate, ethyl vinyl ether).

The formation of 1 -indanols, and therefore of the label necessary to determine the diastereoselectivity of cyclisation, was complicated by the significant amount (3-37\%) of dehydration to indenes that followed the annulation reactions. In general, the $(1 \beta, 2 \beta):(1 \beta, 2 \alpha)$ 1 -indanol diastereoisomers were formed in a $3: 1$ ratio from the heterobimetallic complexes 26 and 27 , the corresponding indenes being formed in relatively low ($3-14 \%$) yield. For the monometallic tetracarbonylmanganese complex 24, however, the amounts of indene formed were too high ($30-37 \%$) to allow valid compar-

Table 6
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $30 ; U_{\text {eq }}$ is defined as one third of the trace of the orthogonalised $U_{i j}$ tensor

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Cr}(1)$	685(1)	-2569(1)	4230(1)	22(1)
$\mathrm{Cr}(2)$	4202(1)	2865(1)	1446(1)	19(1)
O(1)	2872(3)	-1213(2)	423(2)	34(1)
O(2)	- 1816(3)	-2608(3)	5719(2)	40(1)
O(3)	-2704(3)	-2424(3)	2686(2)	45(1)
O(4)	- 539(4)	-5576(2)	3437(2)	44(1)
O(5)	7289 (3)	1443(2)	2028(2)	32(1)
O(6)	7283(4)	4805(3)	1009(2)	49(1)
O(7)	5158(4)	4601(2)	3601(2)	36(1)
C(1)	2553(4)	-373(3)	$1109(2)$	23(1)
C(2)	2629(4)	-509(3)	2136(2)	24(1)
C(3)	2562(4)	-1671(3)	2390(2)	22(2)
C(4)	2294(5)	-3014(3)	1641(2)	28(1)
C(5)	2793(4)	-1635(3)	3476(2)	23(1)
C(6)	3476(4)	-2648(3)	3825(2)	27(1)
C(7)	3715(4)	-2640(3)	4854(2)	33(1)
C(8)	3232(5)	-1640(4)	5535(2)	37(1)
C(9)	2541(5)	-601(3)	$5209(2)$	34(1)
C(10)	2304(4)	-620(3)	4188(2)	27(1)
C(11)	2151(4)	901(3)	907(2)	22(1)
C(12)	2681(4)	1213(3)	41(2)	24(1)
C(13)	2490(4)	2427(3)	-144(2)	29(1)
C(14)	1728(4)	3332(3)	495(2)	29(1)
C(15)	1143(4)	3009(3)	1324(2)	28(1)
C(16)	1359(4)	1793(3)	1532(2)	24(1)
C(17)	-869(4)	-2610(3)	5141(2)	28(1)
C(18)	$-1403(4)$	-2487(3)	3279 (2)	29(1)
C(19)	-76(4)	-4419(3)	3751(2)	29(1)
C(20)	6123(4)	2003(3)	1796(2)	23(1)
C(21)	6081(4)	4083(3)	$1176(2)$	32(1)
C(22)	4803(4)	3931(3)	2775(2)	$26(1)$

isons of the initial cyclisation diastereoselectivity to be made.

In summary, aryltetracarbonylmanganese complexes afford better chemical yields when coupled with alkynes under thermal activation. However, the heterobimetallic complexes couple with alkenes to give a slightly higher yield of insertion products, and, by minimising the subsequent reaction to form indenes, a significantly higher yield of 1 -indanols.

Activation of 24 by oxidative decarbonylation with $\mathrm{Me}_{3} \mathrm{NO}-\mathrm{MeCN}$ afforded the stereoisomeric 1 -indanols $42(45 \%)$ and $43(23 \%)$, and the saturated adduct 34 (15%). This product distribution is consistent with that observed from related systems [18]. Treatment of the bimetallic complexes 26 and 27 under similar conditions afforded (after decomplexation) only the starting ligands 2 (74%) and 3 (73%) respectively.

In an attempt to determine if the diastereoselectivity of formation of the 1 -indanols could be improved by increasing the ligand size around the active metal centre tricarbonyl[((($1,2,3,4,5,6-\eta)$-2-(1-oxopropyl)phenyl)C,O)tricarbonylmanganese (triphenylphosphine)]chro-
mium (29) was synthesised (99\%) from 27 and PPh_{3} via thermally-promoted displacement of CO . The deep red solid analysed correctly for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{CrMnO}_{7} \mathrm{P}$ and showed the molecular ion at $m / z 670$ in the mass spectrum. The infrared spectrum showed three metal$\mathrm{C} \equiv \mathrm{O}$ absorption bands, at 2014,1957 and $1892 \mathrm{~cm}^{-1}$, and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in agreement with the structure. The position of the PPh_{3} ligand was established by single crystal X-ray analysis, which showed it to be axial and anti to the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit (Fig. 5, Tables 5, 11 and 12).

Treatment of 29 with methyl propenoate in refluxing benzene for 23 h afforded only recovered starting material. Treatment of 29 with tert-butyl propenoate in refluxing toluene afforded only a small amount of the indene 58 (8\%), the decomplexed starting material 3 (41%) and the conjugated addition product 33 (37%) comprising most of the product mixture. Similarly, activation with $\mathrm{Me}_{3} \mathrm{NO}$ in MeCN followed by treatment with methyl propenoate afforded only $\mathbf{3}$ (80\%) and 33 (10%) .

In summary, a number of heterobimetallic complexes have been synthesised and coupled with several substituted alkynes and alkenes. Optimum conversions were observed when substituted alkenes were coupled under thermal conditions, giving better chemical yields and diastereoselectivity of cyclopentaannulation than their tetracarbonylmanganese analogues.

2.1. X-ray crystal structures for 26, 29, 30 and 36

Crystals suitable for data collection were mounted on glass fibres and positioned on a Nonius CAD-4 diffractometer. Unit cell dimensions were derived from least

Table 7
Bond lengths (\AA) and angles (deg) for 30

$\mathrm{Cr}(2)-\mathrm{C}(22)$	1.845(3)	$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(13)$	88.52(13)
$\mathrm{Cr}(2)-\mathrm{C}(20)$	1.845(3)	$\mathrm{C}(11)-\mathrm{Cr}(2)-\mathrm{C}(13)$	67.32(11)
$\mathrm{Cr}(2)-\mathrm{C}(21)$	$1.856(3)$	$\mathrm{C}(16)-\mathrm{Cr}(2)-\mathrm{C}(13)$	78.96(12)
$\mathrm{Cr}(2)-\mathrm{C}(11)$	$2.186(3)$	$\mathrm{C}(14)-\mathrm{Cr}(2)-\mathrm{C}(13)$	36.80(12)
$\mathrm{Cr}(2)-\mathrm{C}(16)$	2.198(3)	$\mathrm{C}(12)-\mathrm{Cr}(2)-\mathrm{C}(13)$	36.55(11)
$\mathrm{Cr}(2)-\mathrm{C}(14)$	2.223(3)	$\mathrm{C}(15)-\mathrm{Cr}(2)-\mathrm{C}(13)$	66.25(12)
$\mathrm{Cr}(2)-\mathrm{C}(12)$	2.221(3)	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(19)$	88.61(14)
$\mathrm{Cr}(2)-\mathrm{C}(15)$	2.217(3)	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(17)$	89.42(14)
$\mathrm{Cr}(2)-\mathrm{C}(13)$	$2.223(3)$	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(17)$	89.29(14)
$\mathrm{Cr}(1)-\mathrm{C}(18)$	1.842 (3)	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(10)$	90.27(14)
$\mathrm{Cr}(1)-\mathrm{C}(19)$	1.846 (3)	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(10)$	151.47(12)
$\mathrm{Cr}(1)-\mathrm{C}(17)$	1.852(3)	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(10)$	119.22(13)
$\mathrm{Cr}(1)-\mathrm{C}(10)$	2.198(3)	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(6)$	119.72(13)
$\mathrm{Cr}(1)-\mathrm{C}(6)$	2.202(3)	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(6)$	89.38(13)
$\mathrm{Cr}(1)-\mathrm{C}(8)$	2.210 (3)	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(6)$	150.79(12)
$\mathrm{Cr}(1)-\mathrm{C}(9)$	$2.215(4)$	$\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(6)$	66.62(12)
$\mathrm{Cr}(1)-\mathrm{C}(7)$	2.218(3)	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(8)$	152.63(12)
$\mathrm{Cr}(1)-\mathrm{C}(5)$	2.231(3)	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(8)$	118.66(14)
$O(1)-C(1)$	1.225 (3)	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(8)$	88.73(14)
$\mathrm{O}(2)-\mathrm{C}(17)$	1.151(4)	$\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(8)$	67.09(13)
$\mathrm{O}(3)-\mathrm{C}(18)$	1.152(4)	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(8)$	66.56(13)
$\mathrm{O}(4)-\mathrm{C}(19)$	$1.155(4)$	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(9)$	115.37(14)
$\mathrm{O}(5)-\mathrm{C}(20)$	$1.154(4)$	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(9)$	156.02(13)
$\mathrm{O}(6)-\mathrm{C}(21)$	$1.146(4)$	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(9)$	91.21(13)
$\mathrm{O}(7)-\mathrm{C}(22)$	$1.150(4)$	$\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(9)$	36.99(11)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.469(4)	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(9)$	78.66(13)
$\mathrm{C}(1)-\mathrm{C}(11)$	1.507(4)	$\mathrm{C}(8)-\mathrm{Cr}(1)-\mathrm{C}(9)$	37.41(11)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.354(4)$	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(7)$	157.00(12)
C(3)-C(5)	$1.486(4)$	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(7)$	91.53(14)
C(3)-C(4)	$1.499(4)$	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(7)$	113.58(13)
C(5)-C(6)	1.407(4)	$\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(7)$	78.77(13)
C(5)-C(10)	$1.418(4)$	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(7)$	37.31(11)
C(6)-C(7)	$1.414(4)$	$\mathrm{C}(8)-\mathrm{Cr}(1)-\mathrm{C}(7)$	36.38(14)
$C(7)-C(8)$	1.382(5)	$\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(7)$	66.39 (14)
$C(8)-C(9)$	$1.419(5)$	$\mathrm{C}(18)-\mathrm{Cr}(1)-\mathrm{C}(5)$	91.88(13)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.400(4)$	$\mathrm{C}(19)-\mathrm{Cr}(1)-\mathrm{C}(5)$	114.19(12)
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.399(4)$	$\mathrm{C}(17)-\mathrm{Cr}(1)-\mathrm{C}(5)$	156.50(12)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.430(4)$	$\mathrm{C}(10)-\mathrm{Cr}(1)-\mathrm{C}(5)$	37.35(11)
C(12)-C(13)	$1.394(4)$	$\mathrm{C}(6)-\mathrm{Cr}(1)-\mathrm{C}(5)$	37.01(10)
C(13)-C(14)	$1.403(5)$	$\mathrm{C}(8)-\mathrm{Cr}(1)-\mathrm{C}(5)$	79.46(12)
C(14)-C(15)	$1.402(4)$	$\mathrm{C}(9)-\mathrm{Cr}(1)-\mathrm{C}(5)$	67.11(12)
C(15)-C(16)	1.413(4)	$\mathrm{C}(7)-\mathrm{Cr}(1)-\mathrm{C}(5)$	67.16(11)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(20)$	89.49(13)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.7(3)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(21)$	89.40(14)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	118.3(2)
$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(21)$	87.33(14)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	117.9 (2)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(11)$	122.86(12)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	125.3(3)
$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(11)$	87.78(12)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	119.1(2)
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(11)$	147.31(12)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	124.0(3)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(16)$	93.54(13)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	$116.9(2)$
$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(16)$	111.52(12)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	117.6(3)
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(16)$	160.92(12)	C(6)-C(5)-C(3)	120.1(3)
$\mathrm{C}(11)-\mathrm{Cr}(2)-\mathrm{C}(16)$	37.21(11)	C(10)-C(5)-C(3)	122.32(2)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(14)$	111.37(13)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}(1)$	70.4(2)
$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(14)$	159.07(12)	$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{Cr}(1)$	70.1(2)
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(14)$	94.33(14)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{Cr}(1)$	129.5(2)
$\mathrm{C}(11)-\mathrm{Cr}(2)-\mathrm{C}(14)$	79.57(12)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.4(3)
$\mathrm{C}(16)-\mathrm{Cr}(2)-\mathrm{C}(14)$	67.05(12)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}(1)$	72.6 (2)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(12)$	160.14(12)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Cr}(1)$	71.9(2)
$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(12)$	93.55(12)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.0(3)
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(12)$	110.33(13)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Cr}(1)$	71.5(2)
$\mathrm{C}(11)-\mathrm{Cr}(2)-\mathrm{C}(12)$	37.87(10)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Cr}(1)$	70.7(2)
$\mathrm{C}(16)-\mathrm{Cr}(2)-\mathrm{C}(12)$	67.09(12)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.0(3)
$\mathrm{C}(14)-\mathrm{Cr}(2)-\mathrm{C}(12)$	66.29(12)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cr}(1)$	72.1(2)
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(15)$	88.69(13)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Cr}(1)$	71.5(2)

Table 7 (continued)

$\mathrm{C}(20)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$148.51(11)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$119.5(3)$
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$124.08(13)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Cr}(1)$	$70.8(2)$
$\mathrm{C}(11)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$67.17(12)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Cr}(1)$	$71.1(2)$
$\mathrm{C}(16)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$37.33(11)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Cr}(1)$	$121.4(3)$
$\mathrm{C}(14)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$36.82(11)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{Cr}(1)$	$72.2(2)$
$\mathrm{C}(12)-\mathrm{Cr}(2)-\mathrm{C}(15)$	$78.51(12)$	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$72.6(2)$
$\mathrm{C}(22)-\mathrm{Cr}(2)-\mathrm{C}(13)$	$147.69(12)$		$119.4(2)$
$\mathrm{C}(21)-\mathrm{Cr}(2)-\mathrm{C}(13)$	$122.59(12)$		

squares fits to the observed setting angles of 25 reflections, using monochromated Mo $\mathrm{K} \alpha$ radiation. Intensity data collection employed the $2 \theta / \omega$ technique with a total peak/background count time of $2: 1$. Reflections were counted for 60 s or until $(\sigma I) / I$ was 0.02 . Crystal alignment and decomposition were monitored throughout data collection by measuring three standard reflections every 100 measurements; no statistical variation was observed. The data were corrected for Lorentz and polarisation effects and equivalent reflections averaged. Computing was carried out using the SDP suite of
programs on a PDP-11 for initial data processing, SHELXS-86 [28] and SHELXL-93 [29] on an IBM 4341 or Microvax computer for structure solution and refinement. Details of crystal data and intensity data collection parameters are summarised in Tables 2 and 5.

2.2. Structure solution and refinement

The structures were solved by direct methods using SHELXS-86 [28]. Refinement was by full-matrix least squares [29], minimising the function $\sum \omega\left(\left\|F_{o}\right\|^{2}-\right.$

Scheme 3.

Fig. 4. The atomic arrangement in 36.

Table 8
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $36 ; U_{\text {eq }}$ is defined as one third of the trace of the orthogonalised $U_{i j}$ tensor

Atom	r	y	z	U_{eq}
$\mathrm{Cr}(1)$	$2710(1)$	$3049(1)$	$1817(1)$	$19(1)$
O(1)	$249(1)$	$3225(2)$	$23(1)$	$25(1)$
O(2)	$-1424(1)$	$4880(1)$	$467(1)$	$28(1)$
O(3)	$-1799(1)$	$2958(1)$	$884(1)$	$25(1)$
O(4)	$3496(2)$	$275(2)$	$1969(1)$	$45(1)$
O(5)	$4050(1)$	$3707(2)$	$3050(1)$	$55(1)$
O(6)	$1087(1)$	$2263(2)$	$2548(1)$	$42(1)$
C(1)	$558(1)$	$2843(2)$	$666(1)$	$19(1)$
C(2)	$-68(1)$	$3614(2)$	$1105(1)$	$19(1)$
C(3)	$556(1)$	$4867(2)$	$1322(1)$	$23(1)$
C(3a)	$1637(1)$	$4494(2)$	$1264(1)$	$19(1)$
C(4)	$2550(1)$	$5153(2)$	$1511(1)$	$25(1)$
C(5)	$3492(1)$	$4630(2)$	$1388(1)$	$29(1)$
C(6)	$3510(1)$	$3488(2)$	$1026(1)$	$29(1)$
C(7)	$2582(1)$	$2807(2)$	$790(1)$	$23(1)$
C(7a)	$1646(1)$	$3329(2)$	$907(1)$	$19(1)$
C(8)	$422(2)$	$1359(2)$	$687(1)$	$26(1)$
C(9)	$-1153(1)$	$3909(2)$	$780(1)$	$21(1)$
C(10)	$3191(2)$	$1335(2)$	$1909(1)$	$29(1)$
C(11)	$-2879(1)$	$3192(2)$	$636(1)$	$33(1)$
C(12)	$3540(2)$	$3455(2)$	$2575(1)$	$33(1)$
C(13)	$1703(1)$	$2583(2)$	$2264(1)$	$26(1)$

$\left.\left\|F_{c}\right\|^{2}\right)^{2}$. Atomic scattering factors were for neutral atoms. After initial isotropic refinement, anisotropic thermal parameters were refined for all non-hydrogen atoms. Hydrogen atoms were located from difference maps and refined with a common thermal parameter. A final electron density map showed no feature greater than $0.5 \mathrm{e}^{-3} \AA^{-3}$. Weights used were $\omega=1 /\left[\left(\sigma^{2}\left(F_{o}\right)^{2}\right.\right.$ $\left.\left.+(a P)^{2}+b P\right)\right]$ where $P=\left[\left(F_{o}\right)^{2}+2\left(F_{c}\right)^{2}\right] / 3$, and the final values of a and b are given in Tables 2 and 5. Final atomic coordinates and bond distances and bond angles are given in Tables 3, 4, 6-9, 11, 12. Lists of hydrogen coordinates and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. The crystal structure determinations established the stereochemistries of the four compounds as described earlier in the text. The figures show the observed geometries, and outline the atomic numbering schemes. Each compound contains the arene- $\mathrm{Cr}(\mathrm{CO})_{3}$ tripodal piano-stool arrangement, and each tripod is in the staggered configuration with respect to its arene ring. The average $\mathrm{Cr}-\mathrm{CO}$ and $\mathrm{Cr}-\mathrm{C}$ (arene) distances are consistent at $1.841,2.227 \AA$ for $26,1.848,2.212 \AA$ for 30 , $1.840,2.212 \AA$ for 36, and 1.811, $2.227 \AA$ for 29. The significantly shorter average $\mathrm{Cr}-\mathrm{CO}$ value in 29 compared with 26 is presumably a long range consequence of replacing one of the π-acceptor CO groups on the Mn atom with the triphenylphosphine. The geometries at the Mn atoms in 26 and 29 are also of interest. In both complexes the $\mathrm{Mn}-\mathrm{C}(1)$ and $\mathrm{Mn}-\mathrm{O}(1)$ bonds are equivalent, but the $\mathrm{Mn}-\mathrm{CO}$ bonds show distinct differences which reflect the different Mn donor sets. In 26,
the $\mathrm{Mn}-\mathrm{C}(12)(1.856 \AA), \mathrm{Mn}-\mathrm{C}(13)(1.853 \AA)$ and $\mathrm{Mn}-\mathrm{C}(14)(1.878 \AA$) distances are all quite long (these carbonyl groups lie trans to carbonyl and arene carbon donors which exhibit strong structural trans influences) whereas $\mathrm{Mn}-\mathrm{C}(15)(1.781 \AA)$ is much shorter, indicating a weaker trans influence of the ketonic oxygen. On substituting an axial carbonyl in $\mathbf{2 6}$ for a triphenylphosphine in 29, the $\mathrm{Mn}-\mathrm{C}(13)$ bond (1.812 \AA, trans to

Table 9
Bond lengths (\AA) and angles (deg) for 36

$\mathrm{Cr}-\mathrm{C}(13)$	1.837(2)	$\mathrm{C}(7)-\mathrm{Cr}-\mathrm{C}(4)$	79.71(7)
$\mathrm{Cr}-\mathrm{C}(11)$	1.842(2)	$\mathrm{C}(6)-\mathrm{Cr}-\mathrm{C}(4)$	$67.14(8)$
$\mathrm{Cr}-\mathrm{C}(12)$	1.842(2)	$\mathrm{C}(7 \mathrm{a})-\mathrm{Cr}-\mathrm{C}(4)$	66.67(7)
$\mathrm{Cr}-\mathrm{C}(5)$	$2.195(2)$	$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	89.85(8)
$\mathrm{Cr}-\mathrm{C}(7)$	2.204(2)	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	147.92(8)
$\mathrm{Cr}-\mathrm{C}(6)$	2.207(2)	$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	123.34(9)
$\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	2.218(2)	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	66.39(8)
$\mathrm{Cr}-\mathrm{C}(4)$	2.224(2)	$\mathrm{C}(7)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	66.87(7)
$\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	2.226 (2)	$\mathrm{C}(6)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	78.51(7)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.425(2)	$\mathrm{C}(7 \mathrm{a})-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	36.92(6)
$O(2)-C(9)$	$1.206(2)$	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{a})$	36.59 (6)
$\mathrm{O}(3)-\mathrm{C}(9)$	$1.330(2)$	$C(9)-O(3)-C(10)$	116.0(2)
$\mathrm{O}(3)-\mathrm{C}(10)$	1.449(2)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	106.47(14)
$\mathrm{O}(4)-\mathrm{C}(11)$	1.143(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7 \mathrm{a})$	109.45(14)
$\mathrm{O}(5)-\mathrm{C}(12)$	$1.150(3)$	$C(8)-C(1)-C(7 a)$	114.9(2)
$\mathrm{O}(6)-\mathrm{C}(13)$	$1.149(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	111.17(14)
$\mathrm{C}(1)-\mathrm{C}(8)$	1.511(3)	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	113.27(14)
$\mathrm{C}(1)-\mathrm{C}(7 \mathrm{a})$	1.519(2)	$C(7 a)-C(1)-C(2)$	101.65(13)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.571(2)	$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(3)$	113.1(2)
$\mathrm{C}(2)-\mathrm{C}(9)$	1.508(2)	$\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(1)$	112.12(14)
C(2)-C(3)	1.563(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	106.26(14)
$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})$	1.503(2)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(3)-\mathrm{C}(2)$	103.52(14)
C(3a)-C(4)	1.397(2)	$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	121.0(2)
$C(3 a)-C(7 a)$	$1.407(3)$	$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(3)$	128.1(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.420(3)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})-\mathrm{C}(3)$	110.9(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.395(3)	$\mathrm{C}(4)-\mathrm{C}(3 \mathrm{a})-\mathrm{Cr}$	71.62(11)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.418(3)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})-\mathrm{Cr}$	71.20 (10)
C(7)-C(7a)	1.406(2)	$\mathrm{C}(3)-\mathrm{C}(3 \mathrm{a})-\mathrm{Cr}$	129.99(12)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(11)$	88.37(9)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{C}(5)$	118.5(2)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(12)$	87.98(9)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(4)-\mathrm{Cr}$	71.78(11)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(12)$	88.61(10)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cr}$	70.13(11)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(5)$	147.86(9)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	121.0(2)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(5)$	123.34(9)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}$	72.00 (12)
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(5)$	87.78(9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cr}$	72.40 (11)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(7)$	124.44(8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.1(2)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(7)$	88.06(8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}$	71.04(11)
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(7)$	147.27(8)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Cr}$	71.12(10)
$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(7)$	67.29 (8)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(6)$	119.0(2)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(6)$	161.49(8)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)-\mathrm{Cr}$	72.01(10)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(6)$	93.90(8)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Cr}$	71.39(10)
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(6)$	110.42(9)	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(3 \mathrm{a})$	120.3(2)
$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(6)$	36.96 (8)	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(1)$	128.7(2)
$\mathrm{C}(7)-\mathrm{Cr}-\mathrm{C}(6)$	37.50(7)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(1)$	110.86(14)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	$95.35(8)$	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{Cr}$	70.91(10)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	111.45(8)	$\mathrm{C}(3 \mathrm{a})-\mathrm{C}(7 \mathrm{a})-\mathrm{Cr}$	71.87(10)
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	159.71(9)	$\mathrm{C}(1)-\mathrm{C}(7 \mathrm{a})-\mathrm{Cr}$	132.16(11)
$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	78.76(7)	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{O}(3)$	123.1(2)
$\mathrm{C}(7)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	37.09 (6)	$O(2)-C(9)-C(2)$	125.6(2)
$\mathrm{C}(6)-\mathrm{Cr}-\mathrm{C}(7 \mathrm{a})$	66.72(7)	$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(2)$	111.3(2)
$\mathrm{C}(13)-\mathrm{Cr}-\mathrm{C}(4)$	111.16 (8)	$\mathrm{O}(4)-\mathrm{C}(11)-\mathrm{C}$	179.4(2)
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(4)$	160.41(8)	$\mathrm{O}(5)-\mathrm{C}(12)-\mathrm{Cr}$	179.3(2)
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(4)$	93.44(9)	$\mathrm{O}(6)-\mathrm{C}(13)-\mathrm{Cr}$	178.3(2)
$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(4)$	37.47(8)		

Fig. 5. The atomic arrangement in 29.
arene carbon) shortens considerably, the $\mathrm{Mn}-\mathrm{C}(14)$ bond is $1.795 \AA$ (phosphines exhibit weak structural trans influences), and the $\mathrm{Mn}-\mathrm{C}(15)$ bond is unchanged.

3. Experimental

For general experimental details, see Refs. [30,31]. High field ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400.13 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 100.62 MHz on a Bruker AM400 instrument operating at 9.2 T . Multiplicities were determined from DEPT spectra.
3.1. 2-Phenyl-1,3-dioxolane (5) (97\%), 2-methyl-2-phenyl-1,3-dioxolane (6) (89\%), 2-ethyl-2-phenyl-1,3dioxolane (7) (98\%), 2-methyl-2-(4-methoxyphenyl)-1,3-dioxolane (8) (78\%)

These were synthesised from their parent aryl ketones/aldehydes by treatment with ethane-1,2-diol/ptoluenesulfonic acid / benzene [32].

3.2. Tricarbonyl[2-(η^{6}-phenyl)-1,3-dioxolane] chromium (9)

A nitrogen-degassed mixture of hexacarbonylchromium ($4.40 \mathrm{~g}, 0.020 \mathrm{~mol}$) and $5(3.50 \mathrm{~g}, 0.023 \mathrm{~mol})$, in dibutyl ether (130 ml) and THF (15 ml) was heated to reflux for 48 h under positive nitrogen pressure. The cooled reaction mixture was filtered, concentrated and purified by flash chromatography (silica gel, hexanesdiethyl ether, $3: 1$) to give 9 ($3.83 \mathrm{~g}, 67 \%$) as yellow rods, m.p. $70-72^{\circ} \mathrm{C}$ (Ref. [24] $70-73{ }^{\circ} \mathrm{C}$). $\nu_{\text {max }}(\mathrm{KBr})$ 1891 and $1968 \mathrm{~cm}^{-1}(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}) . \delta_{H} 4.02-4.11, \mathrm{~m}$,

Table 10
Product distribution from coupling reactions of complexes 24, 26 and 27. Reactions of complex 26 and 27 involved a subsequent photolytic decomplexation step in diethyl ether

Alkene / Alkyne	Conditions	Products			
Complex 24					
$\mathrm{PhC} \equiv \mathrm{CPh}$	benzene, $\Delta 11.0 \mathrm{~h}$	55 (92)			
$\mathrm{PhC} \equiv \mathrm{CH}$	benzene, $\Delta 12.5 \mathrm{~h}$	mixture			
$\mathrm{Et} \mathrm{C} \equiv \mathrm{CEt}$	benzene, $\Delta 12.5 \mathrm{~h}$	61 (92)			
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	benzene, $\Delta 11.5 \mathrm{~h}$	57 (30)	42 (2)	43 (33)	
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{CMe}_{3}$	benzene, $\Delta 11.0 \mathrm{~h}$	58 (37)	46 (33)	47 (12)	
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	$\mathrm{Me}_{3} \mathrm{NO}-\mathrm{MeCN}$	34 (15)	42 (45)	43 (23)	
Complex 26					
$\mathrm{PhC} \equiv \mathrm{CPh}$	benzene, $\Delta 24.0 \mathrm{~h}$	31 (5)	52 (24)		
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	benzene, $\Delta 11.5 \mathrm{~h}$	53 (6)	40 (68)	41 (21)	
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{CMe}_{3}$	benzene, $\Delta 22.5 \mathrm{~h}$	54 (14)	44 (47)	45 (21)	
$\mathrm{CH}_{2}=\mathrm{CHSi}(\mathrm{OEt})_{3}$	benzene, $\Delta 24.0 \mathrm{~h}$	mixture			
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	$\mathrm{Me}_{3} \mathrm{NO}-\mathrm{MeCN}$	2 (74)			
Complex 27					
$\mathrm{PhC} \equiv \mathrm{CPh}$	benzene, $\Delta 11.0 \mathrm{~h}$	55 (25)	3 (48)		
$\mathrm{PhC} \equiv \mathrm{CH}$	benzene, $\Delta 10.5 \mathrm{~h}$	mixture			
$\mathrm{EtC} \equiv \mathrm{CEt}$	benzene, $\Delta 24.0 \mathrm{~h}$	61 (25)	3 (70)		
$\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$	benzene, $\Delta 12.0 \mathrm{~h}$	59 (21)	60 (17)		
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	benzene, $\Delta 10.5 \mathrm{~h}$	57 (3)	42 (71)	43 (25)	
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{CMe}_{3}$	benzene, $\Delta 11.5 \mathrm{~h}$	58 (11)	33 (15)	46 (40)	47 (14)
$\mathrm{CH}_{2}=\mathrm{CHSi}(\mathrm{OEt})_{3}$	benzene, $\Delta 11.0 \mathrm{~h}$	3 (70)			
$\mathrm{CH}_{2}=\mathrm{CHOCOMe}$	benzene, $\Delta 11.0 \mathrm{~h}$	3 (65)			
$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$	$\mathrm{Me}_{3} \mathrm{NO}-\mathrm{MeCN}$	3 (43)			

Table 11
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 29; $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalised $U_{i j}$ tensor

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
Mn	67(1)	660(1)	7446 (1)	38(1)
Cr	-2317(1)	-504(1)	7634 (1)	64(1)
P	1560(1)	-250(1)	8075(1)	41(1)
$O(1)$	-473(3)	-425(3)	6515(3)	48(1)
$O(2)$	- 3203(38)	378(38)	5860(26)	159(18)
$O\left(2^{\prime}\right)$	-3196(38)	81(27)	5647(23)	$99(8)$
$O(3)$	-3433(7)	1007(5)	8064(6)	152(4)
O(4)	-4230(24)	- 1575(25)	7136(25)	144(15)
$O\left(4^{\prime}\right)$	-4138(27)	-1654(30)	6722(24)	142(12)
O(5)	967(4)	1912(4)	6546(4)	83(2)
O(6)	-1722(5)	1855(5)	6570(4)	115(2)
O(7)	750(4)	1921(4)	$9030(3)$	71(2)
C(1)	-634(4)	-159(5)	8015(4)	45(2)
C(2)	-977(5)	-1046(5)	7565(4)	47(2)
C(3)	-1380(5)	-1759(5)	7904(5)	58(2)
C(4)	-1525(5)	-1589(6)	8687(5)	62(2)
C(5)	-1308(5)	-711(6)	9083(5)	68(2)
C(6)	-866(5)	-3(5)	8763(4)	58(2)
C(7)	-883(5)	-1101(5)	6706(5)	51(2)
C(8)	-1242(6)	-1930(6)	6090(5)	82(3)
C(9)	-1030(8)	-1954(7)	5313(6)	112(4)
C(10)	-2832(6)	-60(8)	6483(6)	94(3)
C(11)	-3003(7)	423(6)	7896(6)	86(3)
C(12)	-3461(7)	-1187(7)	7226(8)	107(4)
C(13)	633(5)	1375(5)	6871(4)	51(2)
C(14)	- 1044(6)	1367(6)	6907(5)	66(2)
C(15)	501(5)	1435(5)	8398(5)	51(2)
C(16)	2620(5)	300(5)	9030(4)	47(2)
C(17)	2820(5)	1228(5)	8930(5)	69(2)
C(18)	3613(6)	1695(6)	9613(7)	92(3)
C(19)	4207(6)	1221(6)	10377(6)	84(3)
C(20)	4027(6)	297(7)	10490(5)	85(3)
C(21)	3227(5)	-160(5)	9814(4)	58(2)
C(22)	1425(4)	-1418(5)	8475(4)	48(2)
C(23)	1427(6)	-2226(5)	8011 (5)	67(2)
C(24)	1234(7)	-3109(6)	8276(6)	89(3)
C(25)	1034(6)	-3176(7)	9020(6)	87(3)
C(26)	1037(6)	-2383(6)	9501(5)	72(2)
C(27)	1224(5)	-1513(5)	9223(5)	58(2)
C(28)	2132(5)	-511(4)	7294(4)	47(2)
C(29)	3116(6)	-789(6)	7632(5)	73(2)
C(30)	3561(6)	- 1008(6)	7066(6)	84(3)
C(31)	3005(7)	-946(5)	6143(6)	75(2)
C(32)	2036(6)	-643(5)	5787(5)	70(2)
C(33)	1584(5)	-421(5)	6364(4)	52(2)

$4 \mathrm{H}, \quad-\mathrm{OCH} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}-; \quad 5.28-5.37, \quad \mathrm{~m}, \quad 3 \mathrm{H}$, $\mathrm{PhCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.52-5.55, \mathrm{~m}, 3 \mathrm{H}$, $\left(\mathrm{H}_{\text {ortho }}\right)_{2}$ and $\mathrm{H}_{\text {para }} . \delta_{\mathrm{c}} 65.73(2 \mathrm{C}),-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$; 91.02 (2C), $\mathrm{C}_{\text {ortho }} ; 91.22$ (2C), $\mathrm{C}_{\text {meta }} ; 92.91, \mathrm{C}_{\text {para }}$; 101.37, $\mathrm{HC}(\mathrm{OR})_{2} ; 113.07, \mathrm{C}_{\mathrm{ipso}} ; 232.28(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3}$.

3.3. Tricarbonyl(2-methyl-2-(η^{6}-phenyl)-1,3-dioxolanelchromium (10)

A nitrogen-degassed mixture of hexacarbonylchromium ($4.40 \mathrm{~g}, 0.020 \mathrm{~mol}$) and $6(4.00 \mathrm{~g}, 0.024 \mathrm{~mol})$, in
dibutyl ether (130 ml) and THF (15 ml) was heated to reflux for 48 h under positive nitrogen pressure. The reaction mixture was filtered, concentrated and purified by flash chromatography (silica gel, hexanes-diethyl ether, $12: 1$ then $10: 1$) to give $10(2.91 \mathrm{~g}, 49 \%)$ as yellow rods, m.p. $85-89^{\circ} \mathrm{C}$ (Ref. [24] $87-89{ }^{\circ} \mathrm{C}$). $\nu_{\text {max }}$ (Nujol mull) 1866 and $1965 \mathrm{~cm}^{-1}$ ($\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ stretch). $\delta_{H} 1.59, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3} ; 3.98-4.20, \mathrm{~m}, 4 \mathrm{H}$, $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; 5.14, \mathrm{t}, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}$, ($\left.\mathrm{H}_{\text {meta }}\right)_{2} ; 5.42$, bt, J $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {para }} ; 5.67, \mathrm{~d}, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left(\mathrm{H}_{\text {ortho }}\right)_{2}$.

3.4. Tricarbonyl[2-ethyl-2-(η^{6}-phenyl)-1,3-dioxolanelchromium (11)

A nitrogen-degassed mixture of hexacarbonylchromium ($13.75 \mathrm{~g}, 0.063 \mathrm{~mol}$) and $7(10.00 \mathrm{~g}, 0.057 \mathrm{~mol})$ in dibutyl ether (250 ml) and THF (30 ml) was heated to reflux for 45 h under positive nitrogen pressure. The reaction mixture was filtered, concentrated and purified by flash chromatography (silica gel, hexanes-diethyl ether; $10: 0,9: 1$, then $0: 10)$ to give $11(11.97 \mathrm{~g}, 68 \%)$ as yellow crystals. An analytical sample was recrystallised from diethyl ether to give $\mathbf{1 1}$ as large yellow globular crystals. m.p. $116-119^{\circ} \mathrm{C}$. (Found: C, $53.5 ; \mathrm{H}, 4.3$. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CrO}_{5}$. Calc.: C, 53.5 ; H, 4.5%). (Found: M^{+}, 314.0244. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CrO}_{5}$. Calc.: M, 314.0246). $\nu_{\max }$ $(\mathrm{KBr}) 1966$ and $1885 \mathrm{~cm}^{-1}(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}) . \delta_{H} 0.86, \mathrm{t}, J$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.82, \mathrm{q}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 4.00-4.24, \mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; 5.14$, bt, $J 6.4 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.47$, bt, J $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {para }}$; $5.68, \mathrm{~d}, J 6.6 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {ortho }}\right)_{2} . \delta_{c} 7.88,2-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $35.38,2-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 66.07(2 \mathrm{C}),-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; 88.49$ (2C), $\mathrm{C}_{\text {ortho }} ; 93.38$ (2C), $\mathrm{C}_{\text {meta }} ; 95.32, \mathrm{C}_{\text {para }} ; 108.45$, $\mathrm{EtC}(\mathrm{OR})_{2} ; 113.07, \mathrm{C}_{\mathrm{ipso}} ; 232.77$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / \mathrm{z}$ $314\left(M^{+}, 28\right), 285\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}, 5\right), 258(\mathrm{M}-2 \mathrm{CO}, 10)$, $230(258-\mathrm{CO}, 45), 200(20), 186(18), 170(60), 52\left(\mathrm{Cr}^{+}\right.$, 100).

3.5. Tricarbonyl[2 -methyl-2-((1,2,3,4,5,6- $\boldsymbol{\eta})$-4-methox-yphenyl)-1,3-dioxolanelchromium (12)

A nitrogen-degassed mixture of hexacarbonylchromium ($6.23 \mathrm{~g}, 0.028 \mathrm{~mol}$) and $8(5.00 \mathrm{~g}, 0.026 \mathrm{~mol})$ in dibutyl ether (130 ml) and THF (15 ml) was heated to reflux for 32 h under positive nitrogen pressure. The reaction mixture was filtered, concentrated and purified by flash chromatography (silica gel, hexanes-diethyl ether; $10: 0,9: 1$, then $0: 10$) to give $12(6.52 \mathrm{~g}, 77 \%)$ as yellow crystals. An analytical sample was recrystallised from diethyl ether to give 11 as yellow microcrystals, m.p. $114-116^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 51.9 ; \mathrm{H}, 4.6 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CrO}_{6}$ $\cdot 1 / 4 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. Calc.: C, $51.7 ; \mathrm{H}, 4.8 \%$). (Found: $\mathrm{M}^{+\dagger}$, 330.0198. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CrO}_{6}$. Calc.: M, 330.0196). $\nu_{\max }$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1965$ and $1883 \mathrm{~cm}^{-1}(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}) . \delta_{H} 1.58, \mathrm{~s}$,

Table 12
Bond lengths (\AA) and angles (deg) for 29

$\mathrm{Mn}-\mathrm{C}(15)$	1.781 (8)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(4)$	37.2(2)
$\mathrm{Mn}-\mathrm{C}(14)$	$1.795(8)$	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(4)$	36.2(2)
$\mathrm{Mn}-\mathrm{C}(13)$	$1.812(8)$	$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(6)$	$151.4(4)$
$\mathrm{Mn}-\mathrm{C}(1)$	$2.026(6)$	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(6)$	124.4(4)
$\mathrm{Mn}-\mathrm{O}(1)$	$2.064(4)$	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(6)$	90.5(4)
$\mathrm{Mn}-\mathrm{P}$	$2.370(2)$	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(6)$	65.7(2)
$\mathrm{Cr}-\mathrm{C}(12)$	1.805(10)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(6)$	78.2(3)
$\mathrm{Cr}-\mathrm{C}(10)$	1.809(10)	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(6)$	37.0 (2)
$\mathrm{Cr}-\mathrm{C}(11)$	$1.818(9)$	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(6)$	65.8(3)
$\mathrm{Cr}-\mathrm{C}(1)$	$2.335(6)$	$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(1)$	158.1(4)
$\mathrm{Cr}-\mathrm{C}(2)$	$2.168(6)$	$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(1)$	97.3(3)
$\mathrm{Cr}-\mathrm{C}(3)$	$2.177(7)$	$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(1)$	114.9(3)
$\mathrm{Cr}-\mathrm{C}(4)$	2.224(7)	$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(1)$	36.9(2)
$\mathrm{Cr}-\mathrm{C}(5)$	2.204(7)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(1)$	66.9 (2)
$\mathrm{Cr}-\mathrm{C}(6)$	2.254 (7)	$\mathrm{C}(5)-\mathrm{Cr}-\mathrm{C}(1)$	66.0.2)
$\mathrm{P}-\mathrm{C}(22)$	1.822(7)	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(1)$	78.2(2)
$\mathrm{P}-\mathrm{C}(18)$	$1.839(6)$	$\mathrm{C}(6)-\mathrm{Cr}-\mathrm{C}(1)$	36.0(2)
$\mathrm{P}-\mathrm{C}(28)$	$1.843(6)$	$\mathrm{C}(22)-\mathrm{P}-\mathrm{C}(16)$	105.4(3)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.242(7)	$\mathrm{C}(22)-\mathrm{P}-\mathrm{C}(28)$	102.6(3)
$O(2)-O\left(2^{\prime}\right)$	$0.55(7)$	$\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(28)$	101.3(3)
$\mathrm{O}(2)-\mathrm{C}(10)$	1.11 (5)	C(22)-P-Mn	115.1(2)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}(10)$	$1.25(4)$	$\mathrm{C}(16)-\mathrm{P}-\mathrm{Mn}$	$115.4(2)$
$\mathrm{O}(3)-\mathrm{C}(11)$	1.146 (9)	$\mathrm{C}(28)-\mathrm{P}-\mathrm{Mn}$	115.3(2)
$\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)$	0.75(5)	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Mn}$	117.7(4)
$\mathrm{O}(4)-\mathrm{C}(12)$	1.21(3)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(2)-\mathrm{C}(10)$	91(10)
$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}(12)$	$1.19(4)$	$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}(10)$	63(9)
$\mathrm{O}(5)-\mathrm{C}(13)$	$1.152(7)$	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{O}(4)-\mathrm{C}(12)$	70(5)
O(6)-C(14)	$1.143(8)$	$\mathrm{O}(4)-\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}(12)$	74(5)
$\mathrm{O}(7)-\mathrm{C}(15)$	$1.160(7)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	123.1(6)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.419(8)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	124.7(7)
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.433(8)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$112.2(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.401(8)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Cr}$	71.5(4)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.470 (8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cr}$	77.9 (4)
$C(4)-C(3)$	$1.405(9)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{Cr}$	122.1(4)
$C(5)-C(4)$	$1.375(9)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$114.5(6)$
$\mathrm{C}(6)-\mathrm{C}(5)$	1.414 (9)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Mn}$	131.6(5)
C 7)-C(8)	$1.487(9)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mn}$	113.8(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.432(9)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cr}$	68.9(4)
$\mathrm{C}(16)-\mathrm{C}(21)$	$1.370(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cr}$	65.2(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.373 (8)	$\mathrm{Mn}-\mathrm{C}(1)-\mathrm{Cr}$	133.8(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.388(10)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.8(6)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.354(11)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cr}$	69.6(4)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.363(11)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{Cr}$	75.1(4)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.381(9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.3(7)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.373(9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{Cr}$	72.7(4)
$\mathrm{C}(22)-\mathrm{C}(27)$	1.382(8)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Cr}$	73.4(4)
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.392(10)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.1(7)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.371(11)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cr}$	71.1(4)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.369(11)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cr}$	69.6(4)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.382(10)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.5(7)
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.370(9)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Cr}$	73.2(4)
$\mathrm{C}(28)-\mathrm{C}(33)$	$1.384(8)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Cr}$	70.8(4)
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.380(10)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	$117.0(6)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.372(10)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	120.7(6)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.360 (10)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	122.3(7)
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.404(9)$	C(9)-C(8)-C(7)	117.8(7)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(14)$	89.5(3)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{O}\left(2^{\prime}\right)$	26(4)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(13)$	92.0(3)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{Cr}$	165(2)
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{C}(13)$	87.8(3)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}(10)-\mathrm{Cr}$	169(2)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{C}(1)$	90.9(3)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{Cr}$	179.7(6)
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{C}(1)$	90.3(3)	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}(12)-\mathrm{O}(4)$	$37(3)$
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{C}(1)$	176.5(3)	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{C}(12)-\mathrm{Cr}$	158(2)
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{O}(1)$	$168.7(2)$	$\mathrm{O}(4)-\mathrm{C}(12)-\mathrm{Cr}$	165(2)
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{O}(1)$	94.2(3)	$\mathrm{O}(5)-\mathrm{C}(13)-\mathrm{Mn}$	172.6 (6)

Table 12 (continued)

$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{O}(1)$	$98.8(2)$	$\mathrm{O}(6)-\mathrm{C}(14)-\mathrm{Mn}$	$176.6(8)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{O}(1)$	$78.4(2)$	$\mathrm{O}(7)-\mathrm{C}(15)-\mathrm{Mn}$	$176.7(6)$
$\mathrm{C}(15)-\mathrm{Mn}-\mathrm{P}$	$92.3(2)$	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	$118.7(7)$
$\mathrm{C}(14)-\mathrm{Mn}-\mathrm{P}$	$176.1(2)$	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{P}$	$124.4(5)$
$\mathrm{C}(13)-\mathrm{Mn}-\mathrm{P}$	$88.7(2)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{P}$	$116.9(5)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}$	$93.0(2)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.7(7)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{P}$	$84.56(13)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.4(8)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(10)$	$84.0(5)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120.9(8)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(11)$	$87.0(4)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.4(8)$
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(11)$	$88.0(4)$	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.8(7)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(2)$	$121.3(4)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	$117.3(7)$
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(2)$	$93.1(3)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{P}$	$122.2(5)$
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(2)$	$151.7(4)$	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{P}$	$120.2(5)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(3)$	$92.7(3)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121.9(8)$
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(3)$	$116.1(4)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$119.2(8)$
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(3)$	$155.7(3)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$121.7(7)$
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	$37.6(2)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$118.9(6)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(5)$	$114.6(4)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	$121.7(7)$
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(5)$	$161.4(4)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)$	$118.9(6)$
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(5)$	$91.8(4)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{P}$	$120.0(5)$
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(5)$	$78.4(3)$	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{P}$	$121.0(5)$
$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(5)$	$66.3(3)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$121.5(7)$
$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(4)$	$90.6(4)$	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$119.2(8)$
$\mathrm{C}(10)-\mathrm{Cr}-\mathrm{C}(4)$	$152.7(4)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	$120.7(7)$
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}(4)$	$118.5(3)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$120.0(7)$
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(4)$	$67.0(3)$	$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{C}(32)$	$119.6(7)$

$3 \mathrm{H}, 2-\mathrm{CH}_{3} ; 3.72, \mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3} ; 3.97-4.15, \mathrm{~m}, 4 \mathrm{H}$, $-\mathrm{OC} \mathrm{H} \mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{O}-; 5.03$, bt, $J 7.0 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {orho }}\right)_{2}$ to $\mathrm{OMe} ; 5.82$, bd, $J 7.0 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {ortho }}\right)_{2}$ to $\mathrm{MeC}(\mathrm{OR})_{2}$. $\delta_{c} \quad 29.17,2-\mathrm{CH}_{3} ; 55.58, \quad \mathrm{OCH}_{3} ; 65.46$ (2C), $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-; 75.85$ (2C), $\mathrm{C}_{\text {ortho }} ; 93.34$ (2C), $\mathrm{C}_{\text {meta }}$; 106.66 and $107.52, \mathrm{C}_{\text {ipso }}$ to $\mathrm{MeC}(\mathrm{OR})_{2}$ and $\mathrm{MeC}(\mathrm{OR})_{2}$; $143.89, \mathrm{C}_{\text {ipso }}$ to $\mathrm{OMe} ; 232.93$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / \mathrm{z}$ $330\left(M^{+}, 40\right), 315\left(M-\mathrm{CH}_{3}, 3\right), 298(M-\mathrm{MeOH}, 10)$, 274 ($M-2 \mathrm{CO}, 25$), 246(274-CO, 90), 218(93), 202(37), $52\left(\mathrm{Cr}^{+}, 100\right)$.

3.6. Tricarbonyl[($1,2,3,4,5,6-\eta)$ benzaldehyde]chromium (13)

A nitrogen-degassed solution of $9(2.84 \mathrm{~g}, 9.90$ $\mathrm{mmol}), p$-toluenesulphonic acid $(0.17 \mathrm{~g}, 0.99 \mathrm{mmol})$ and water $(0.72 \mathrm{~g}, 0.040 \mathrm{~mol})$ in acetone (50 ml) was heated to reflux for 1.0 h under a nitrogen atmosphere. The solvent was removed in vacuo and the residue partitioned between diethyl ether and water. Flash chromatography (silica gel, hexanes-diethyl ether, 3:1) afforded $13(1.30 \mathrm{~g}, 76 \%)$ as red rods, m.p. $76-78^{\circ} \mathrm{C}$ (Ref. [33] 76-78 ${ }^{\circ} \mathrm{C}$). $\nu_{\text {max }}(\mathrm{KBr}) 1973$ and $1886(\mathrm{Cr}-$ $\mathrm{C} \equiv \mathrm{O}$ stretch $), 1689 \mathrm{~cm}^{-1}(\mathrm{CHO}) . \delta_{H} 5.32$, bt, J 6.4 $\mathrm{Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.72$, bt, J $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {para }} ; 5.95$, bd, J $6.6 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {ortho }}\right)_{2} ; 9.46, \mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO} . \delta_{c} 89.02$ (2C), $\mathrm{C}_{\text {ortho }} ; 94.36, \mathrm{C}_{\text {ipso }} ; 94.60(2 \mathrm{C}), \mathrm{C}_{\text {mieta }} ; 95.45$, $\mathrm{C}_{\text {рага }} ; 187.66,1-\mathrm{CHO} ; 229.87$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3}$.

3.7. Tricarbonyll (η^{6}-phenyl)ethanonelchromium (14)

A nitrogen-degassed solution of $10(2.00 \mathrm{~g}, 6.70$ mmol), p-toluenesulphonic acid ($0.12 \mathrm{~g}, 0.70 \mathrm{mmol}$)
and water ($0.13 \mathrm{~g}, 7.20 \mathrm{mmol}$) in acetone (50 ml) was heated to reflux for 1.5 h under a nitrogen atmosphere. The solvent was removed in vacuo and the residue partitioned between diethyl ether and water. Flash chromatography (silica gel, hexanes-diethyl ether, 1:1) afforded $14(1.30 \mathrm{~g}, 76 \%)$ as orange rods, m.p. $84-85^{\circ} \mathrm{C}$ (Ref. [34] 83.5-84.5 ${ }^{\circ} \mathrm{C}$). $\nu_{\max }(\mathrm{KBr}) 1903$ and 1965 $(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1686 \mathrm{~cm}^{-1}\left(\mathrm{R}_{2} \mathrm{CO}\right) . \delta_{H} 2.43, \mathrm{~s}, 3 \mathrm{H}, 1-$ $\mathrm{COCH}_{3} ; 5.25, \mathrm{tt}, J 6.4,1.3 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.62, \mathrm{tt}$, $J 6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {para }} ; 6.03$, dd, $J 6.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left(\mathrm{H}_{\text {ortho }}\right)_{2} . \delta_{c} 25.16,1-\mathrm{COCH}_{3} ; 89.25(2 \mathrm{C}), \mathrm{C}_{\text {ortho }} ; 94.19$ (2C), $\mathrm{C}_{\text {meta }} ; 95.14, \mathrm{C}_{\text {para }} ; 95.56, \mathrm{C}_{\text {ipso }} ; 194.92,1-$ $\mathrm{COCH}_{3} ; 230.50(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3}$.

3.8. Tricarbonyl[1-(η^{6}-phenyl)-1-propanone] chromium

 (15)A nitrogen-degassed solution of $11(10.02 \mathrm{~g}, 0.032$ mol), p-toluenesulphonic acid ($0.60 \mathrm{~g}, 3.49 \mathrm{mmol}$) and water ($1.00 \mathrm{~g}, 0.056 \mathrm{~mol}$) in acetone (90 ml) was heated under gentle reflux for 2.25 h under a nitrogen atmosphere. The solvent was removed in vacuo and the residue partitioned between diethyl ether and water. Flash chromatography (silica gel, hexanes-diethyl ether, 1:1) afforded: (i) recovered 11 ($0.72 \mathrm{~g}, 7 \%$); (ii) 15 $(8.62 \mathrm{~g}, 89 \%)$ as red rods, m.p. $110-112^{\circ} \mathrm{C}$ [35]. $\nu_{\text {max }}$ $(\mathrm{KBr}) 1972$ and $1897(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O})$ and $1682 \mathrm{~cm}^{-1}$ $\left(\mathrm{R}_{2} \mathrm{CO}\right) . \delta_{H} 1.19, \mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{COCH}_{2} \mathrm{CH}_{3}$; $2.79, \mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 5.28$, bt, J 6.6 $\mathrm{Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.63$, $\mathrm{tt}, J 6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {para }}$; 5.63 , bdd, $J 6.8,1.0 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {ortho }}\right)_{2} . \delta_{c} 8.03,1-$ $\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 30.47,1-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 89.46(2 \mathrm{C}), \mathrm{C}_{\text {ortho }}$; $93.86(2 \mathrm{C}), \mathrm{C}_{\text {meta }} ; 95.09, \mathrm{C}_{\text {para }} ; 95.59, \mathrm{C}_{\mathrm{ipso}} ; 197.84$, $1-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 230.68(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3}$.

3.9. Tricarbonyll((1,2,3,4,5,6- η)-4-methoxyphenyl)ethanonel chromium (16)

A nitrogen degassed solution of $12(5.52 \mathrm{~g}, 0.017$ mol), p-toluenesulphonic acid ($0.30 \mathrm{~g}, 1.74 \mathrm{mmol}$) and water $(1.00 \mathrm{~g}, 0.056 \mathrm{~mol})$ in acetone $(30 \mathrm{ml})$ was heated under gentle reflux for 1.25 h under a nitrogen atmosphere. The solvent was removed in vacuo and the residue partitioned between diethyl ether and water. Flash chromatography (silica gel, hexanes-diethyl ether, 1:1) afforded 16 ($4.54 \mathrm{~g}, 95 \%$) as orange rods. An analytical sample was recrystallised from diethyl ether-dichloromethane to give 16 as large yellow globular crystals, m.p. $87-88^{\circ} \mathrm{C}$. (Found: C, $50.1 ; \mathrm{H}, 3.5$. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{CrO}_{5}$. Calc.: C, $50.3 ; \mathrm{H}, 3.5 \%$). (Found: M^{+-}, 285.9923. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{CrO}_{5}$. Calc.: M, 285.9933). $\nu_{\max }$ $(\mathrm{KBr}) 1965$ and $1886(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1681 \mathrm{~cm}^{-1}\left(\mathrm{R}_{2} \mathrm{CO}\right)$. $\delta_{H} 2.40, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{COCH}_{3} ; 3.77, \mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3} ; 5.14$, bd, J $7.2 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 3)_{2} ; 6.17$, bd, J $7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $(\mathrm{H} 2)_{2} . \delta_{c} 25.22,1-\mathrm{COCH}_{3} ; 55.87,4-\mathrm{OCH}_{3} ; 76.38$ (2С), C3; 91.25, C1; 94.61 (2C), C2; 144.52, C4;
193.92, 1-COCH3; 230.52 (3C), $\quad \mathrm{Cr}(\mathrm{CO})_{3} . \quad \mathrm{m} / \mathrm{z}$ $286\left(M^{+\cdot}, 18\right), 258(M-\mathrm{CO}, 8), 230(258-\mathrm{CO}, 12)$, $202(230-\mathrm{CO}, 91), 135(10), 52\left(\mathrm{Cr}^{+}, 100\right)$.

3.10. Dicarbonyl(triphenylphosphine) [(1,2,3,4,5,6- η)benzaldehyde]chromium (18)

A solution of $13(0.20 \mathrm{~g}, 0.83 \mathrm{mmol})$ and triphenylphosphine ($0.26 \mathrm{~g}, 0.73 \mathrm{mmol}$) in benzene (50 ml) (quartz tube, medium Hg pressure lamp) was photolysed for 8 h under positive nitrogen pressure. The dark red solution was filtered and purified by flash chromatography (silica gel, hexanes-dichloromethane, 1:1) to give 18 ($0.15 \mathrm{~g}, 40 \%$) as a dark red solid, m.p. $130-131^{\circ} \mathrm{C}$ (Ref. [24] 134-137 ${ }^{\circ} \mathrm{C}$). $\nu_{\max }(\mathrm{KBr}) 1906$ and $1850(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1684 \mathrm{~cm}^{-1}(\mathrm{CHO}) . \delta_{H} 4.63$, btd, $J 6.2,1.8 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 3)_{2} ; 4.78$, dt, $J 6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 4 ; 5.44$, bd, $J 6.4 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 2)_{2} ; 7.30-7.45, \mathrm{~m}, 15 \mathrm{H}$, $\mathrm{PPh}_{3} ; 9.20, \mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{CHO}$.

3.11. Dicarbonyl(triphenylphosphine) $[((1,2,3,4,5,6-\eta)$ -4-methoxyphenyl)ethanoneJchromium (19)

A solution of $16(0.20 \mathrm{~g}, 0.70 \mathrm{mmol})$ and triphenylphosphine ($0.20 \mathrm{~g}, 0.77 \mathrm{mmol}$) in cyclohexane-diethyl ether ($4: 1,35 \mathrm{ml}$) was photolysed for 1.5 h (Rayonet Photochemical Reactor, $3000 \AA$ with ten tubes) under positive nitrogen pressure. The dark red solution was filtered and purified by flash chromatography (silica gel, hexanes-diethyl ether, 4:1) to give 19 (0.25 g , 69%) as a dark red solid which was recrystallised from diethyl ether-dichloromethane-hexanes as orange-red needles, m.p. $136-139^{\circ} \mathrm{C}$. (Found: C, 66.8; H, 4.9. $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{CrO}_{4} \mathrm{P}$. Calc.: C, $66.9 ; \mathrm{H}, 4.8 \%$). (Found: M^{+}, 520.0896. $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{CrO}_{4} \mathrm{P}$. Calc.: M, 520.0884). $\nu_{\max }$ $(\mathrm{KBr}) 1893$ and $838(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1669\left(\mathrm{R}_{2} \mathrm{CO}\right), 1526$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 2.25, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{COCH}_{3} ; 3.50, \mathrm{~s}, 3 \mathrm{H}$, $4-\mathrm{OCH}_{3} ; 4.36$, dd, J $7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 3)_{2} ; 5.53$, dd, $J 6.9,3.1 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 2)_{2} ; 7.30-7.45, \mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3} . \delta_{c}$ $26.08,1-\mathrm{COCH}_{3} ; 55.27,4-\mathrm{OCH}_{3} ; 73.75(2 \mathrm{C}), \mathrm{C} 3$; $89.76, \mathrm{Cl} ; 91.24$ (2C), C2; 127.95, d, J $8.9 \mathrm{~Hz}, 6 \mathrm{C}$, $\mathrm{C}_{\text {meta }} \mathrm{PPh}_{3} ; 129.15,3 \mathrm{C}, \mathrm{C}_{\text {para }} \mathrm{PPh}_{3} ; 132.81, \mathrm{~d}, J 10.9$ $\mathrm{Hz}, 6 \mathrm{C}, \mathrm{C}_{\text {ortho }} \mathrm{PPh}_{3} ; 138.43, \mathrm{~d}, J 34.4 \mathrm{~Hz}, 3 \mathrm{C}, \mathrm{C}_{\text {ipso }}$ $\mathrm{PPh}_{3} ; 142.10, \mathrm{C} 4 ; 195.99,1-\mathrm{COCH}_{3} ; 239.34$, d, J 19.7 $\mathrm{Hz}, 3 \mathrm{C}, \mathrm{Cr}(\mathrm{CO})_{3} . m / z 520\left(\mathrm{M}^{+\cdot}, 3\right), 464(M-2 \mathrm{CO}$, 13), 314(18), 277(8), 262 $\left(\mathrm{PPh}_{3}^{+}, 100\right), 183(65), 135(20)$, 108(30), 91(8), 77(12), 52($\left.\mathrm{Cr}^{+}, 22\right)$.

3.12. Dicarbonyl(tributylphosphine) $[((1,2,3,4,5,6-\eta)-4$ methoxyphenyl)ethanonel chromium (20)

A solution of $16(0.31 \mathrm{~g}, 1.08 \mathrm{mmol})$ and tributylphosphine ($0.26 \mathrm{~g}, 1.30 \mathrm{mmol}$) in cyclohexane-diethyl ether ($4: 1,50 \mathrm{ml}$) was photolysed for 2.5 h (Rayonet Photochemical Reactor, $3000 \AA$, ten tubes) under positive nitrogen pressure. The dark red solution
was filtered and purified by flash chromatography (silica gel, hexanes-diethyl ether, 4:1) to give $20(0.27 \mathrm{~g}$, 55%) as a dark red oil. (Found: $M^{+\cdot}, 460.1832$. $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{CrO}_{4} \mathrm{P}$. Calc.: $M, 460.1835$). $\nu_{\text {max }}(\mathrm{KBr}) 1888$ and $1836(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1661\left(\mathrm{R}_{2} \mathrm{CO}\right), 1522 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. $\delta_{H} 0.92, \mathrm{t}, J 7.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 1.20-$ $1.41, \mathrm{~m}, 12 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 1.46-1.62$, m, $6 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 2.39, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{COCH}_{3}$; $3.75, \mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3} ; 4.65$, bdd, J $6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, $(\mathrm{H} 3)_{2} ; 5.67$, bdd, $J 6.9,3.7 \mathrm{~Hz}, 2 \mathrm{H}$, (H2) $)_{2} . \delta_{c} 13.82$ (3C), $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 24.28$, d, J $11.9 \mathrm{~Hz}, 3 \mathrm{C}$, $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 25.53(4 \mathrm{C}), \quad 1-\mathrm{COCH}_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 27.99$, d, J $20.3 \mathrm{~Hz}, 3 \mathrm{C}$, $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3} ; 55.15,4-\mathrm{OCH}_{3} ; 71.95(2 \mathrm{C}), \mathrm{C} 3$; $87.28, \mathrm{C} 1 ; 89.99$ (2С), C2; 140.33, C4; 195.42, 1$\mathrm{COCH}_{3} ; 239.40, \mathrm{~d}, J 20.2 \mathrm{~Hz}, 3 \mathrm{C}, \mathrm{Cr}(\mathrm{CO})_{3} . m / z$ $460\left(M^{+}, 8\right), \quad 404(M-2 \mathrm{CO}, 22), \quad 347(2), 298(3)$, $254(39), 198(10), 173(8), 150(40), 135(100), 107(20)$, 92(13), 77(24), 52($\left.\mathrm{Cr}^{+}, 12\right)$.
3.13. Dicarbonyl(triisopropylphosphite) $[((1,2,3,4,5,6$ η)-4-methoxyphenyl)ethanoneI chromium (21)

A solution of $\mathbf{1 6}(0.31 \mathrm{~g}, 1.08 \mathrm{mmol})$ and triisopropylphosphite ($0.25 \mathrm{~g}, 1.19 \mathrm{mmol}$) in cyclohexane-diethyl ether ($4: 1,50 \mathrm{ml}$) was photolysed for 2 h (Rayonet Photochemical Reactor, $3000 \AA$) under positive nitrogen pressure. The dark red solution was concentrated and purified by flash chromatography (silica gel, hexanesdiethyl ether, $4: 1$) to give $21(0.33 \mathrm{~g}, 62 \%)$ as a dark red solid which was recrystallised from diethyl ether-di-chloromethane-hexanes as orange-red needles, m.p. $136-139^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 51.7$; $\mathrm{H}, 6.8 . \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{CrO}_{7} \mathrm{P}$. Calc.: C, 51.5; H, 6.8\%). (Found: M^{+}, 466.1210. $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{CrO}_{7} \mathrm{P}$. Calc.: $M, 466.1213$). $\nu_{\max }(\mathrm{KBr}) 1903$ and $1845(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1673\left(\mathrm{R}_{2} \mathrm{CO}\right), 1529 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. $\delta_{H} 1.24, \mathrm{~d}, J 6.1 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{P}\left[\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} ; 2.38$, s, $3 \mathrm{H}, 1-\mathrm{COCH}_{3} ; 3.75, \mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{OCH}_{3} ; 4.51$, septet $\times \mathrm{d}, J$ $6.1,3.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{P}\left[\mathrm{OC} H\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} ; 4.81$, bdd, $J 6.9,2.2$ $\mathrm{Hz}, 2 \mathrm{H},(\mathrm{H} 3)_{2} ; 5.81$, bdd, J $6.9,3.5 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 2)_{2} . \delta_{c}$ 24.09 , d, J $2.7 \mathrm{~Hz}, 6 \mathrm{C}, \mathrm{P}\left[\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} ; 25.60$, 1$\mathrm{COCH}_{3} ; 55.29,4-\mathrm{OCH}_{3} ; 67.99, \mathrm{~d}, J 5.3 \mathrm{~Hz}, 3 \mathrm{C}$, $\mathrm{P}\left[\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} ; 73.48(2 \mathrm{C}), \mathrm{C} 3 ; 89.93, \mathrm{C} 1 ; 91.71$ (2C), C2; 141.20, C4; 195.63, 1-COCH ${ }_{3} ; 237.47, \mathrm{~d}, J$ $30.6 \mathrm{~Hz}, 3 \mathrm{C}, \mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}, 20\right), 410(M-2 \mathrm{CO}$, 30), 309(22), 260(20), 202(20), 135(100), 115(22), $107(10), 52\left(\mathrm{Cr}^{+}, 25\right)$.

3.14. [(($(1,2,3,4,5,6-\eta)$-2-Acetylphenyl)-C, O)tetracarbonylmanganese Itricarbonylchromium (26)

A nitrogen-degassed solution of $14(0.87 \mathrm{~g}, 3.38$ mmol) and pentacarbonyl(phenylmethyl)manganese $(1.16 \mathrm{~g}, 4.05 \mathrm{mmol})$ in heptane (40 ml) was heated to vigorous reflux for 1.5 h under positive nitrogen pressure. During this time a heavy precipitate formed. The
deep red reaction mixture was concentrated in vacuo and was purified by flash chromatography using hex-anes-dichloromethane as eluent to give in order of increasing polarity: (i) pentacarbonyl(phenylmethyl)manganese $(0.20 \mathrm{~g})$; (ii) tetracarbonyl(2-acetyl-4methoxyphenyl)manganese (22) ($60 \mathrm{mg}, 6 \%$) [10]; (iii) $26(0.54 \mathrm{~g}, 38 \%)$ as a red solid which was recrystallised from diethyl ether as red rods, m.p. $130-150^{\circ} \mathrm{C}$ (dec.). (Found: C, 42.9; H, 1.4. $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{CrMnO}_{8}$. Calc.: C, 42.7; $\mathrm{H}, 1.7 \%$). (Found: $M^{+\cdot}$, 421.8928. $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{CrMnO}_{8}$. Calc.: M, 421.8928). $\nu_{\max }$ (KBr) 2093 (sharp), 2010 (sharp), 1965 (broad), 1937 (broad), 1894 (broad) and 1866 (broad), $(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ and $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{O}), 1598(\mathrm{C}=\mathrm{C})$, $1511 \mathrm{~cm}^{-1}\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right) . \delta_{H} 2.52, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{COCH}_{3} ; 5.39$, td, $J 6.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4,5.62$, td, $J 6.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, H5; 5.70, bd, J $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 ; 6.03$, dd, J 6.3, 0.7 $\mathrm{Hz}, \mathrm{H} 6 . \delta_{c} 23.46,2-\mathrm{COCH}_{3} ; 91.10, \mathrm{C} 4 ; 93.36, \mathrm{C} 3$; 94.55, C5; 102.80, C6; 104.75, C2; 153.26, C1; 207.77, $208.80,210.54$ and $219.94, \mathrm{Mn}(\mathrm{CO})_{4} ; 218.75,2-$ $\mathrm{COCH}_{3} ; 232.68(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3} . m / z 422\left(\mathrm{M}^{+\cdot}, 3\right)$, $366(M-2 C O, 2), 338(366-\mathrm{CO}, 2), 310(338-\mathrm{CO}, 5)$, $282(310-\mathrm{CO}, 3), 256\left(M-\mathrm{Mn}(\mathrm{CO})_{4}+\mathrm{H}, 12\right), 226(10)$, 200(10), 172(43), 129(5), 105(20), 92(14), 77(20), $52\left(\mathrm{Cr}^{+}, 100\right)$; (iv) an unidentified deep purple solid (69 mg); (v) 14 ($0.37 \mathrm{~g}, 43 \%$); (vi) hexacarbonyl[μ-($\eta^{6}: \eta^{6}$ -2,4-diphenylbut-2-en-3-one)]dichromium (30) (0.11 g , 13%) as a red solid which was recrystallised from diethyl ether-dichloromethane-hexanes as red rods, m.p. $150-153{ }^{\circ} \mathrm{C}$. (Found: C, 53.1; H, 2.5. $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Calc.: C, $53.5 ; \mathrm{H}, 2.9 \%$). (Found: M^{+-}, 493.9581. $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Calc.: M, 493.9550). $\nu_{\text {max }}$ (KBr) 1973 (broad) and 1902 (broad) ($\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$); 1652 $\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right), 1591 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 2.43, \mathrm{~d}, J 1.2 \mathrm{~Hz}$, $3 \mathrm{H},(\mathrm{H1})_{3} ; 5.30, \mathrm{bt}, J 7.0 \mathrm{~Hz}, 2 \mathrm{H}, 4-\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.38$, bt, $J 6.5 \mathrm{~Hz}, 2 \mathrm{H}, 2-\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 5.49, \mathfrak{t t}, J 6.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, 2 -($\mathrm{H}_{\text {рага }}$); 5.67 , bd, $J 6.6 \mathrm{~Hz}, 2 \mathrm{H}, 2-\left(\mathrm{H}_{\text {огһо }}\right)_{2} ; 5.67, \mathrm{tt}, J$ $6.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\left(\mathrm{H}_{\text {para }}\right) ; 6.12$, dd, $J 6.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}$, 4-($\left.\mathrm{H}_{\text {ortho }}\right)_{2} ; 6.85, \mathrm{q}, J{ }^{2} 1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 . \delta_{c} 18.14, \mathrm{Cl}$; 89.36 (2C), 2-($\left.\mathrm{C}_{\text {ortho }}\right) ; 90.82(2 \mathrm{C}), 2-\left(\mathrm{C}_{\text {meta }}\right) ; 92.24$ (2C), 4-($\mathrm{C}_{\text {ortho }}$); 93.30, 2-($\left.\mathrm{C}_{\text {para }}\right) ; 94.43,4-\left(\mathrm{C}_{\text {para }}\right) ; 95.20$ (2C), 4-($\mathrm{C}_{\text {meta }}$); 97.74, 4-($\mathrm{C}_{\text {ipso }}$); 107.83, 2-($\mathrm{C}_{\text {ipso }}$); 120.29, C3; 151.72, C2; 187.68, C4; 230.71 and 231.93 (3C each), $\mathrm{Cr}(\mathrm{CO})_{3} . m / z 494\left(M^{+}, 8\right), 438(M-2 \mathrm{CO}$, 3), $410(438-\mathrm{CO}, 20), 382(410-\mathrm{CO}, 5), 354(382-\mathrm{CO}$, 5), $326(354-\mathrm{CO}, 42), 302(354-\mathrm{Cr}, 10), 274(326-\mathrm{Cr}$, 100), $52\left(\mathrm{Cr}^{+}, 82\right)$; (vi) an unidentified deep red oil (10 mg).

3.15. Tricarbonyll((($1,2,3,4,5,6-\eta)-2$-(1-oxopropyl)-phenyl)-C,O)tetracarbonylmanganesel chromium (27)

A nitrogen-degassed solution of $15(0.87 \mathrm{~g}, 3.21$ mmol) and pentacarbonyl(phenylmethyl)manganese $(1.10 \mathrm{~g}, 3.85 \mathrm{mmol})$ in heptane (40 ml) was heated to vigorous reflux for 2.0 h under positive nitrogen pressure. During this time a heavy precipitate formed. The
deep red reaction mixture was concentrated in vacuo and was purified by flash chromatography using hex-anes-dichloromethane as eluent to give in order of increasing polarity: (i) pentacarbonyl(phenylmethyl) manganese (0.10 g); (ii) tetracarbonyl[(2-(1-oxopropyl) phenyl)-C,O]manganese (24) ($40 \mathrm{mg}, 4 \%$) [36]; (iii) 27 ($0.95 \mathrm{~g}, 68 \%$) as a red solid which was recrystallised from diethyl ether-dichloromethane as red rods, m.p. $115-120^{\circ} \mathrm{C}$ (dec.). (Found: C, 44.1; H, 1.8. $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{CrMnO}_{8}$. Calc.: $\mathrm{C}, 44.1 ; \mathrm{H}, 2.1 \%$). (Found: M^{+}, 435.9082. $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{CrMnO}_{8}$. Calc.: M, 435.9083). $\nu_{\max }$ (KBr) 2094 (sharp), 2014 (sharp), 1992 (broad), 1945 (broad) and 1868 (broad), ($\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ and $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{O}$), $1589(\mathrm{C}=\mathrm{C}), 1508 \mathrm{~cm}^{-1}\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right) . \delta_{H} 1.24, \mathrm{t}, J 7.2$ $\mathrm{Hz}, 3 \mathrm{H}, 2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 2.81, \mathrm{dq}, J 17.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 2.90$, dq, $J 17.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ $\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 5.40$, td, $J 6.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 ; 5.61$, td, $J 6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 5.74$, dd, J $6.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$; 6.05 , dd, $J 6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2} . \delta_{c} 8.13,2-$ $\mathrm{COCH}_{2} \mathrm{CH}_{3}, 30.72,2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 91.16, \mathrm{C} 4 ; 92.78$, С3; 94.58, С5; 103.08, С6; 104.58, С2; 152.89, С1; 207.91, 208.96, 210.64 and $220.01, \mathrm{Mn}(\mathrm{CO})_{4} ; 222.00$, $2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 232.85$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . m / z 436\left(\mathrm{M}^{+}\right.$, 14), $380(M-2 \mathrm{CO}, 12), 352(366-\mathrm{CO}, 15), 324(352-\mathrm{CO}$, 30), $296(324-\mathrm{CO}, 10), 268\left(M-\mathrm{Mn}(\mathrm{CO})_{4}+\mathrm{H}, 20\right)$, $240(268-\mathrm{CO}, 10), 185(100), 55\left(\mathrm{Mn}^{+}, 28\right), 52\left(\mathrm{Cr}^{+}, 60\right)$; (iv) $15(0.27 \mathrm{~g}, 31 \%)$.

3.16. [(((1,2,3,4,5,6-ך)-2-Acetyl-4-methoxyphenyl)C,O)tetracarbonylmanganesel tricarbonylchromium (28)

A nitrogen-degassed solution of $16(0.10 \mathrm{~g}, 0.35$ mmol) and pentacarbonyl(phenylmethyl)manganese $(0.12 \mathrm{~g}, 0.42 \mathrm{mmol})$ in heptane (10 ml) was heated to vigorous reflux with stirring for 35 min under positive nitrogen pressure. During this time a heavy precipitate formed. The deep red reaction mixture was concentrated in vacuo and was purified by flash chromatography using hexanes-diethyl ether as eluent to give in order of increasing polarity: (i) pentacarbonyl(phenylmethyl) manganese (20 mg); (ii) tetracarbonyl(2-acetyl-4methoxyphenyl)manganese (23) (4 mg, 4\%) [10]; (iii) 28 ($50 \mathrm{mg}, 32 \%$) as a red solid which was recrystallised from diethyl ether as red rods, m.p. $110-119^{\circ} \mathrm{C}$. (Found: M^{+}, 451.9023. $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{CrMnO}_{9}$. Calc.: M, 451.9032). $\nu_{\text {max }}(\mathrm{KBr}) 2091$ (sharp), 1995 (broad), 1950 (broad) and 1883 (broad), $(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ and $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{O}), 1579$ $(\mathrm{C}=\mathrm{C}), 1518 \mathrm{~cm}^{-1} \quad\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right) . \delta_{H} 2.46, \mathrm{~s}, 3 \mathrm{H}, 2-$ $\mathrm{COCH}_{3} ; 3.84, \mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{OCH}_{3} ; 5.15$, dd, $J 7.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 4 ; 5.91, \mathrm{~d}, J 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.93$, d, J 6.7 Hz , $1 \mathrm{H}, \mathrm{H} 3 . \delta_{c} 23.75,2-\mathrm{COCH}_{3} ; 55.54,5-\mathrm{OCH}_{3} ; 76.03$, C4; 94.25, С3; 99.69, С3; 143.94, С5; 157.16, C1; 207.02, 208.36, 210.14 and $219.62, \mathrm{Mn}(\mathrm{CO})_{4} ; 215.66$, $2-\mathrm{COCH}_{3} ; 231.07(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3} . m / z 452\left(\mathrm{M}^{+}, 1\right)$, $396(M-2 \mathrm{CO}, 2), 368(396-\mathrm{CO}, 1), 340(368-\mathrm{CO}, 3)$, $312(340-\mathrm{CO}, 1), 286\left(M-\mathrm{Mn}(\mathrm{CO})_{4}+\mathrm{H}, 5\right), 266(7)$,

256(5), 230(5), 202(30), 150(286-Cr(CO) $\left.{ }_{3}, 28\right)$, 135(100), 107(14), 92(14), 77(25), 52($\left.\mathrm{Cr}^{+}, 27\right)$; (iv) an unidentified deep violet component (3 mg); (v) 16 (36 $\mathrm{mg}, 36 \%$); (vi) an unidentified deep red component (4 mg).

3.17. Tetracarbonyl((2-(1-oxopropyl)phenyl)-C,Olmanganese (24)

A nitrogen-degassed solution of $3(1.00 \mathrm{~g}, 7.46$ mmol) and pentacarbonyl(phenylmethyl)manganese $(2.67 \mathrm{~g}, 9.32 \mathrm{mmol})$ in heptane (80 ml) was heated to reflux under positive nitrogen pressure for 2 h . The reaction mixture was concentrated in vacuo and purified by flash chromatography using hexanes-diethyl ether as eluent to give $24(2.53 \mathrm{~g})$ as a yellow solid. Recrystallisation from hexanes-diethyl ether afforded yellow needles ($2.12 \mathrm{~g}, 95 \%$), m.p. $69-73^{\circ} \mathrm{C}$ [36]. (Found: M^{+}, 299.9831. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{MnO}_{5}$. Calc.: M, 299.9830). $\nu_{\max }$ (KBr) 2082 (sharp), 1992 (broad), and 1938 (broad), $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{O}, 1578(\mathrm{C}=\mathrm{C}), 1538 \mathrm{~cm}^{-1} \quad\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right) . \delta_{H}$ $1.22, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 3.01, \mathrm{q}, J 7.4$ $\mathrm{Hz}, 2 \mathrm{H}, 2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 7.17$, td, $J 7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H4; 7.41, td, J 7.3, 1.3 Hz, 1H, H5; 7.85, bd, J 7.7 Hz , $1 \mathrm{H}, \mathrm{H} 3 ; 8.09$, bdd, J $7.5,0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 . \delta_{c} 8.90$, $2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 30.70,2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 123.69$, C 4 ; 130.78, C3; 133.65, C5; 141.52, C6; 144.68, C2; 192.94, $\mathrm{C} 1 ; 211.61(2 \mathrm{C}), 212.99$, and 221.11, $\mathrm{Mn}(\mathrm{CO})_{4} ; 219.65$, $2-\mathrm{COCH}_{2} \mathrm{CH}_{3} . m / z \quad 300\left(M^{+}, 10\right), 272(M-\mathrm{CO}, 2)$, 244(272-CO, 3), 216(272-2CO, 11), 188(216-CO, 71), 134(15), 105(100), 77(47), 55(Mn+, 28), 51(15).
3.18. Tricarbonylf(((1,2,3,4,5,6- $\boldsymbol{\eta})$-2-(1-oxopropyl)-phenyl)-C,O)tricarbonylmanganese (triphenylphosphine)]chromium (29)

A nitrogen-degassed solution of $27(1.00 \mathrm{~g}, 2.29$ mmol) and triphenylphosphine ($0.60 \mathrm{~g}, 2.29 \mathrm{mmol}$) in benzene (90 ml) was heated to vigorous reflux for 45 min under a nitrogen atmosphere. The deep red reaction mixture was concentrated in vacuo and was purified by flash chromatography using hexanes-diethyl ether as eluent to give $29(1.52 \mathrm{~g}, 99 \%)$ as a crimson solid which was recrystallised from diethyl ether-dichloro-methane-hexanes as red rods, m.p. $169-171^{\circ} \mathrm{C}$. (Found: C, 59.0; H, 3.5. $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{CrMnO}_{7} \mathrm{P}$. Calc.: C, 59.1; H, 3.6%). (Found: $M^{+\cdot}$, 670.0045. $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{CrMnO}_{7} \mathrm{P}$. Calc.: $M, 670.0056$). $\nu_{\max }(\mathrm{KBr}) 2014$ (sharp), 1957 (broad), and 1892 (broad), ($\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ and $\mathrm{Mn}-\mathrm{C} \equiv \mathrm{O}$), $1582(\mathrm{C}=\mathrm{C}), 1496 \mathrm{~cm}^{-1}\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{O}\right) . \delta_{H} 1.24, \mathrm{t}, J 7.2$ $\mathrm{Hz}, 3 \mathrm{H}, 2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 2.13$, dqd, $J 18.2,7.2,2.3 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 2.62$, dqd, $J 18.3,7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 5.11$, dd, $J 6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 ; 5.14$, td, $J 6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4,5.27$, td, $J 6.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 5 ; 6.18$, bd, J $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 . \delta_{c} 7.85,2-$ $\mathrm{COCH}_{2} \mathrm{CH}_{3}, 30.13,2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 91.00, \mathrm{C} 4 ; 91.75$,

C3; 92.75, C5; 104.58, C6; 105.99, C2; 128.43, d, J $9.0 \mathrm{~Hz}, 6 \mathrm{C}, \mathrm{PPh}_{3} \mathrm{C}_{\text {meta }} ; 130.15,3 \mathrm{C}, \mathrm{PPh}_{3} \mathrm{C}_{\text {para }} ; 131.15$, $\mathrm{d}, J 35.0 \mathrm{~Hz}, 3 \mathrm{C}, \mathrm{PPh}_{3} \mathrm{C}_{\mathrm{ipso}} ; 133.80, \mathrm{~d}, J 10 \mathrm{~Hz}, 6 \mathrm{C}$, $\mathrm{PPh}_{3} \mathrm{C}_{\text {ortho }} ; 169.60, \mathrm{~d}, J 16.4 \mathrm{~Hz}, \mathrm{Cl} ; 214.85$ (d, J $23.0 \mathrm{~Hz}), 216.07(\mathrm{~d}, J 22.2 \mathrm{~Hz}), 226.73(\mathrm{~d}, J 20.0 \mathrm{~Hz})$, $\mathrm{Mn}(\mathrm{CO})_{3} ; 218.72,2-\mathrm{COCH}_{2} \mathrm{CH}_{3} ; 234.09$ (3C), $\mathrm{Cr}(\mathrm{CO}) 3 . m / z$ DEI $670\left(M^{+\cdot}, 0\right)$, $586(M-3 \mathrm{CO}, 2)$, 502(3), 447(2), 380(2), 262($M-\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)+\mathrm{H}$, 100), 183(55), 108(30), 52($\left.\mathrm{Cr}^{+}, 15\right) . ~ m / z \mathrm{FAB}$ $670\left(M^{+}, 4\right), 586(M-3 \mathrm{CO}, 16), 534(4), 502(2), 273(2)$.
3.19. Coupling reactions of [(($1,2,3,4,5,6-\eta)-2$ -acetylphenyl)-C,O)tetracarbonylmanganeseltricarbonylchromium (26)

3.19.1. Thermally-promoted insertion of diphenylacetyl-

 eneA solution of $26(0.15 \mathrm{~g}, 0.36 \mathrm{mmol})$ and diphenylacetylene ($0.25 \mathrm{~g}, 1.42 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 24 h. The reaction mixture was diluted with diethyl ether, filtered and concentrated in vacuo to give a deep red oil which was redissolved in diethyl ether and exposed to bright sunlight for 24 h . Filtration and purification by PLC using diethyl ether-hexanes as eluent afforded in order of increasing polarity: (i) 1,3-diphenylbut-2-en-1one (31) ($8 \mathrm{mg}, 5 \%$); (ii) 1-methyl-2,3-diphenyl-1 H -in-den-1-ol (52) ($25 \mathrm{mg}, 24 \%$) as a clear oil. (Found: M^{+-}, 298.1365. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$. Calc.: $M, 298.1358$). $\nu_{\max }(\mathrm{KBr})$ $3357(\mathrm{OH}), 1602,1487$ and $1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H}$ $1.95, \mathrm{~s}, 1-\mathrm{OH} ; 2.06, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3} ; 7.20-7.44, \mathrm{~m}, 14 \mathrm{H}$, aromatic H. $\delta_{c} 24.00,1-\mathrm{CH}_{3} ; 83.31, \mathrm{C} 1 ; 120.78$, $121.84,126.61,127.28,127.54,127.94$ (2C), 128.44, 128.49 (2C), 129.25 (2C), and 129.42 (2C), aromatic C-H; 134.67 and 134.72, [2-Ph and 3-Ph] C ${ }_{\text {ipso }} ; 138.69$, $142.15,146.95$ and $149.50, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 3 \mathrm{a}$ and C7a. m / z $298\left(M^{+\cdot}, 100\right), 283\left(M-\mathrm{CH}_{3}, 69\right), 281(M-\mathrm{OH}, 17)$, 265(18), 252(18), 220(32).

3.19.2. Thermally-promoted insertion of methyl propenoate

3.19.2.1. Without decomplexation. A nitrogen-degassed solution of $26(0.79 \mathrm{~g}, 1.87 \mathrm{mmol})$ and methyl propenoate ($1.50 \mathrm{ml}, 0.017 \mathrm{mmol}$) in benzene (80 ml) was heated to reflux under positive nitrogen pressure for 23 h . The reaction mixture was diluted with diethyl ether, filtered and purified by flash chromatography on silica gel using hexanes-diethyl ether as eluent to give in order of increasing polarity: (i) (η^{6}-benzene)tricarbonylchromium (17) ($19 \mathrm{mg}, 5 \%$); (ii) tricarbonyl [(3a,3,4,5,6,7,7a- η)-3-methyl-2-methoxycarbonyl-1 H indene] chromium (48) ($97 \mathrm{mg}, 16 \%$) which was recrystallised from diethyl ether as orange micro rods, m.p. $142-145^{\circ} \mathrm{C}$. (Found: C, 55.6; H, 3.6. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{CrO}_{5}$. Calc.: C, 55.6; H, 3.7\%). (Found: $M^{+-}, 324.0085$.
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{CrO}_{5}$. Calc.: $M, 324.0090$). $\nu_{\text {max }}(\mathrm{KBr}) 1961$ and $1866(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1698 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) . \delta_{H} 2.43$, $\mathrm{t}, J 2.3 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3} ; 3.71, \mathrm{q}, J 2.3 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H1})_{2}$; $3.82, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 5.22$, td, J $6.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, H5; 5.44, td, J 6.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.75$, bd, $J 6.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 4 ; 5.81$, bd, J $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 . \delta_{c} 11.97,3-\mathrm{CH}_{3}$; $38.72, \mathrm{Cl} ; 51.50,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 88.44,88.67,89.36$ and 92.61, C4, C5, C6 and C7; 112.03 and 113.29, C3a and $\mathrm{C} 7 \mathrm{a} ; 130.55, \mathrm{C} 2 ; 150.04, \mathrm{C} 3 ; 164.52,2-\mathrm{CO}_{2} \mathrm{CH}_{3}$; 232.59 (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . m / z 324\left(M^{+}, 30\right), 293(M-$ $\left.\mathrm{OCH}_{3}, 5\right), 268(324-\mathrm{CO}, 17), 240(268-\mathrm{CO}, 93), 212$ (20), 182(32), 157(50), 128(20), 52($\left.\mathrm{Cr}^{+}, 100\right)$; (iii) a mixture ($2: 2: 1$) $(0.15 \mathrm{~g})$ consisting of 48,14 , and an unidentified compound; (iv) a mixture (4:1) (0.36 g , 56%) of two tricarbonylchromium indenol complexes. The major isomer was obtained pure after repetitive recrystallisation from diethyl ether and assigned as the α diastereoisomer of tricarbonyl[$(1 \beta, 2 \beta)-(3 \mathrm{a}, 4,5,6,7$, 7a,- η)-2,3-dihydro-1-methyl-2-methoxycarbonyl-1 H -in-den-1-ol]chromium (36) yellow rods, m.p. $154-156^{\circ} \mathrm{C}$. (Found: C, 52.6; H, 3.9. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{CrO}_{6}$. Calc.: $\mathrm{C}, 52.7 ; \mathrm{H}$, 4.1%). (Found: $M^{+\cdot}, 342.0200 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{CrO}_{6}$. Calc.: M, 342.0196). $\nu_{\max }(\mathrm{KBr}) 3402(\mathrm{OH}), 1960$ and 1874 $(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1709 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) . \delta_{H} 1.80, \mathrm{~s}, 3 \mathrm{H}$, $1-\mathrm{CH}_{3} ; 2.95$, dd, $J 15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.24$, dd, J $10.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \alpha ; 3.25$, dd, $J 15.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 3 \alpha ; 3.26, \mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 3.81, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 5.13$, td, $J 6.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 5.27$, bd, $J 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$; 5.49 , td, J $6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.69$, bd, $J 6.4 \mathrm{~Hz}, 1 \mathrm{H}$, H7. $\delta_{c} 25.25,1-\mathrm{CH}_{3}, 31.91, \mathrm{C} 3 ; 52.24, \mathrm{C} 2$ and $2-$ $\mathrm{CO}_{2} \mathrm{CH}_{3} ; 79.85, \mathrm{Cl} ; 86.56,88.38,90.68$ and 95.39 , $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 113.48$ and 113.96, C3a and C7a; $172.42, \quad 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 232.38$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / \mathrm{z}$ $342\left(M^{+}, 50\right), 324\left(M-\mathrm{H}_{2} \mathrm{O}, 3\right), 310\left(M-\mathrm{CH}_{3} \mathrm{OH}, 1\right)$, $286(M-2 \mathrm{CO}, 10), 258(286-\mathrm{CO}, 80), 240\left(258-\mathrm{H}_{2} \mathrm{O}\right.$, 90), 227(10), 212(40), 198(50), 129(40), 52($\left.\mathrm{Cr}^{+}, 100\right)$. The minor diastereoisomer could not be isolated pure.
3.19.2.2. With decomplexation. Treatment of $26(0.10 \mathrm{~g}$, 0.24 mmol) with methyl propenoate $(0.15 \mathrm{ml}, 0.17$ mmol) in refluxing benzene for 11.5 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Filtration through Celite followed by purification by PLC (silica gel, hexanes-diethyl ether, multiple elution) afforded in order of increasing polarity: (i) 2-methoxycarbonyl-3-methyl-1 H indene (53) ($3 \mathrm{mg}, 6 \%$) as a white solid which was recrystallised from hexanes-chloroform to give white needles, m.p. $65-68^{\circ} \mathrm{C}$. (Found: M^{+}, 188.0836. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$. Calc.: M, 188.0837). $\nu_{\text {max }}(\mathrm{KBr}) 1705$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1608,1574$ and $1434 \mathrm{~cm}^{-1} \quad(\mathrm{C}=\mathrm{C}) . \delta_{H}$ $2.55, \mathrm{t}, J 2.4 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3} ; 3.65, \mathrm{q}, J 2.3 \mathrm{~Hz}, 2 \mathrm{H}$, $(\mathrm{Hl})_{2}, 3.83, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.30-7.55, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4$, H 5 , H6 and $\mathrm{H} 7 . \delta_{c} 12.38,3-\mathrm{CH}_{3} ; 38.71, \mathrm{C} 1 ; 51.16$, $2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 121.12,123.96,126.57$ and 127.68, C 4 , C5, C6, and C7; 129.43, C2; 143.48 and 145.20; C3a
and $\mathrm{C} 7 \mathrm{a} ; 151.69, \mathrm{C} 3 ; 166.36,2-\mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z}$ $188\left(M^{+}, 69\right), 173\left(M-\mathrm{CH}_{3}, 5\right), 157\left(M-\mathrm{OCH}_{3}, 21\right)$, 129(100); (ii) ($1 \beta, 2 \beta$)-2,3-dihydro-2-methoxycarbo-nyl-1-methyl-1H-inden-1-ol (40) ($33 \mathrm{mg}, 68 \%$) as a white solid which was recrystallised from hexanes-diethyl ether as white rods, m.p. $53-55^{\circ} \mathrm{C}$. (Found: M^{+}, 206.0939. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$. Calc.: $M, 206.0943$). $\nu_{\text {max }}(\mathrm{KBr})$ $3458(\mathrm{OH}), 1732\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1520,1480$ and 1437 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.76, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3} ; 2.84, \mathrm{~s}, 1 \mathrm{H}$, $1-\mathrm{OH} ; 3.10$, dd, $J 13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.21$, dd, J $8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \alpha ; 3.43$, dd, $J 13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 3 \alpha ; 3.78, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.21-7.42, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4$, $\mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 25.56,1-\mathrm{CH}_{3} ; 32.75, \mathrm{C} 3 ; 51.83$, $2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 54.55, \mathrm{C} 2 ; 81.02, \mathrm{C} 1 ; 122.69,124.75$, 127.17 and 128.74, C4, C5, C6 and C7; 140.71 and 145.91, C 3 a and $\mathrm{C} 7 \mathrm{a} ; 173.40,2-\mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z}$ $206\left(M^{+\cdot}, 2\right), 191\left(M-\mathrm{CH}_{3}, 21\right), 188\left(M-\mathrm{H}_{2} \mathrm{O}, 100\right)$, $175\left(M-\mathrm{OCH}_{3}, 20\right), 159\left(191-\mathrm{CH}_{3} \mathrm{OH}, 60\right)$, 146(47), 131(80), 129(60), 103(30), 77(20), 43(33); (iii) ($1 \beta, 2 \alpha$)-2,3-dihydro-2-methoxy-carbonyl-1-methyl-1 H -inden-1-ol (41) ($10 \mathrm{mg}, 21 \%$) as a clear oil. (Found: $M^{+\cdot}$, 206.0941. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$. Calc.: M, 206.0943). $\nu_{\text {max }}$ $(\mathrm{KBr}) 3444(\mathrm{OH}), 1732\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1518,1480$ and $1437 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.38, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3} ; 2.49, \mathrm{~s}, 1 \mathrm{H}$, $1-\mathrm{OH} ; 3.08$, dd, $J 15.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.21$, dd, J $15.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.36$, dd, $J 9.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 2 \beta ; 3.81, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.19-7.39, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4$, $\mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 25.14,1-\mathrm{CH}_{3}, 31.87, \mathrm{C} 3 ; 51.87$, $2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 58.37, \mathrm{C} 2 ; 82.68, \mathrm{C} 1 ; 122.37,124.75$, 127.34 and $128.40, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 138.68$ and $147.00, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; 172.99,2-\mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z}$ $206\left(M^{+\cdot}, 5\right), 191\left(M-\mathrm{CH}_{3}, 72\right), 188\left(M-\mathrm{H}_{2} \mathrm{O}, 61\right)$, $175\left(M-\mathrm{OCH}_{3}, 17\right), 159\left(191-\mathrm{CH}_{3} \mathrm{OH}, 92\right), 146(52)$, 131(100), 103(35, 77(32), 43(38).

3.19.3. Thermally-promoted insertion of tert-butyl propenoate

Treatment of $26(0.21 \mathrm{~g}, 0.49 \mathrm{mmol})$ with tert-butyl propenoate ($0.20 \mathrm{ml}, 0.15 \mathrm{mmol}$) in refluxing benzene for 22.5 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Filtration and purification by PLC (silica gel, hexanesdiethyl ether, multiple elution) afforded in order of increasing polarity: (i) 3-methyl-2-(1,1-dimethyl-ethoxycarbonyl)-1 H -indene (54) ($16 \mathrm{mg}, 14 \%$) as a clear oil. (Found: $M^{+\cdot}, 230.1304 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$. Calc.: M, 230.1307). $\nu_{\text {max }}(\mathrm{KBr}) 1688\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1456 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$) $. \delta_{H} 1.57, \mathrm{~s}, 9 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 2.51, \mathrm{t}, J 2.4$ $\mathrm{Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3} ; 3.61, \mathrm{q}, \mathrm{J} 2.3 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H})_{2} ; 7.25-$ $7.51, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 12.33,3-\mathrm{CH}_{3}$; $28.40(3 \mathrm{C}), 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 38.98, \mathrm{Cl} ; 80.17$, $2-$ $\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 120.93,123.83,126.44$ and $127.32, \mathrm{C} 4$, C5, C6 and C7; 131.59, C2; 143.35 and 145.53, C3a and $\mathrm{C} 7 \mathrm{a} ; 149.89, \mathrm{C} 3 ; 165.49,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \mathrm{m} / \mathrm{z}$ $230\left(M^{+}, 35\right), 174\left(M-\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 100\right), 157(M-$ $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 38\right), \quad 130(70) ; 115(20)$, 57(37); (ii)
(1 $\beta, 2 \beta$)-2,3-dihydro-2-(1,1-dimethylethoxycarbonyl)-1-methyl-1 H -inden-1-ol (44) ($53 \mathrm{mg}, 47 \%$) as a white solid which was recrystallised from hexanes-diethyl ether as white needles, m.p. $111-114^{\circ} \mathrm{C}$. (Found: C, $72.3 ; \mathrm{H}, 7.9 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$. Calc.: $\mathrm{C}, 72.6 ; \mathrm{H}, 8.1 \%$). (Found: $M^{+}-\mathrm{H}_{2} \mathrm{O}, 230.1309 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$. Calc.: M $\left.\mathrm{H}_{2} \mathrm{O}, 230.1307\right)$. $\nu_{\max }(\mathrm{KBr}) 3418(\mathrm{OH}), 1716$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1455 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.51, \mathrm{~s}, 9 \mathrm{H}$, $2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 1.73$, s, $3 \mathrm{H}, 1-\mathrm{CH}_{3} ; 3.06$, dd, J 19.1, $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.06, \mathrm{~s}, 1-\mathrm{OH} ; 3.08$, dd, $J 11.7,8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2 \alpha ; 3.36$, dd, $J 19.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta$; $7.21-7.39, \mathrm{~m}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 26.64,1-\mathrm{CH}_{3}$; $28.18(3 \mathrm{C}), 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 32.96, \mathrm{C} 3 ; 55.17, \mathrm{C} 2$; 80.92 and $81.36, \mathrm{Cl}$ and $2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 122.69$, 124.79, 127.13 and 128.64, C4, C5, C6 and C7; 140.90 and 146.32, C 3 a and $\mathrm{C} 7 \mathrm{a} ; 172.53,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$. $m / z \quad 248\left(M^{+\cdot},<1\right), 230\left(M-\mathrm{H}_{2} \mathrm{O}, 12\right), 192(10)$, 177(18), 174(32), 159(33), 146(33), 130(32), 57(100); (iii) $(1 \beta, 2 \alpha)$-2,3-dihydro-2-methoxycarbonyl-1-methyl$1 H$-inden-1-ol (45) ($24 \mathrm{mg}, 21 \%$) as a white solid which was recrystallised from diethyl ether as white needles, m.p. $59-62^{\circ} \mathrm{C}$. (Found: M^{+}, 248.1416. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$. Calc.: $M, 248.1412$). $\nu_{\text {max }}(\mathrm{KBr}) 3432(\mathrm{OH})$, $1722\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1479$ and $1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H}$ $1.41, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3} ; 1.53, \mathrm{~s}, 9 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 2.58$, $\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 3.02$, dd, J $14.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.12$, dd, $J 14.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.24$, dd, $J 9.0,7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 2 \beta ; 7.15-7.39, \mathrm{~m}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and H7. δ_{c} 25.03, $1-\mathrm{CH}_{3}, 28.22,3 \mathrm{C}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 31.79, \mathrm{C} 3 ; 59.08$, $\mathrm{C} 2 ; 81.30,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 82.40, \mathrm{C} 1 ; 122.30,124.69$, 127.17 and $128.17, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 138.83$ and 147.25, C 3 a and $\mathrm{C} 7 \mathrm{a} ; 171.76,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \mathrm{m} / \mathrm{z}$ $248\left(M^{+}, \quad 1\right), \quad 230\left(M-H_{2} \mathrm{O}, \quad 10\right), \quad 192(M-$ $\left.\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \quad 11\right), \quad 177(70), \quad 174(82), \quad 159(90)$, 146(57), 131(50), 57(100), 43(32).

3.19.4. Thermally-promoted insertion of triethoxyvinylsilane

Treatment of $26(0.10 \mathrm{~g}, 0.24 \mathrm{mmol})$ with triethoxyvinylsilane ($0.40 \mathrm{ml}, 1.75 \mathrm{mmol}$) in refluxing benzene for 8 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Filtration and attempted purification by PLC (silica gel, hexanes-diethyl ether, multiple elution) afforded ten bands of similar intensity, none of which were investigated further.

3.19.5. Chemically-promoted coupling with $\mathrm{Me}_{3} \mathrm{NO}$ and methyl propenoate

A nitrogen-degassed solution of $26(0.10 \mathrm{~g}, 0.23$ mmol) in acetonitrile (5 ml) was treated with trimethylamine N -oxide ($27 \mathrm{mg}, 0.36 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. The red solution slowly deepened in colour. The reaction mixture was stirred at ambient temperature for 10 min and was then treated with methyl propenoate $(0.10 \mathrm{ml}, 0.95 \mathrm{mmol})$.

After 100 h at room temperature the reaction mixture was diluted with diethyl ether and filtered. It was then redissolved in diethyl ether and exposed to bright sunlight for 3 h . Work-up and purification (PLC, diethyl ether-hexanes, multiple elution) afforded only acetophenone (2) ($21 \mathrm{mg}, 74 \%$).
3.20. Tricarbonyll(($(1,2,3,4,5,6-\eta)$-2-(1-oxopropyl)phenyl)C,O)tetracarbonylmanganeselchromium (27)
3.20.1. Thermally-promoted insertion of diphenylacetylene

A solution of $27(0.15 \mathrm{~g}, 0.34 \mathrm{mmol})$ and diphenylacetylene ($0.25 \mathrm{~g}, 1.38 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 23 h. The reaction mixture was diluted with diethyl ether, filtered and concentrated in vacuo to give a deep red oil which was redissolved in diethyl ether and exposed to bright sunlight for 24 h . Filtration and purification by PLC using diethyl ether-hexanes as eluent gave in order of increasing polarity: (i) 3 ($22 \mathrm{mg}, 48 \%$); (ii) 1-ethyl-2,3-diphenyl-1 H-inden-1-ol (55) ($27 \mathrm{mg}, 25 \%$) as a white solid which was recrystallised from diethyl ether-hexanes as crystalline rods, m.p. $154-157^{\circ} \mathrm{C}$. (Found: C, 88.2; H, 6.5. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}$. Calc.: C, 88.4; H, 6.5%). (Found: $M^{+\cdot}, 312.1506 . \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}$. Calc.: M, 312.1514). $\nu_{\max }(\mathrm{KBr}) 3352$ (OH), 1602, 1484 and $1444 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.19, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}, 1-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.97$, dq, $J 13.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $2.15, \mathrm{~s}, 1-\mathrm{OH} ; 2.16$, dq, $J 13.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $7.20-7.52$, m, 14 H , aromatic $\mathrm{H} . \delta_{c} 7.91,1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $29.80,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 86.98, \mathrm{Cl} ; 120.60,122.02,126.52$, $127.27,127.54,127.97$ (2C), 128.40, 128.50 (2C), 129.29 (2C) and 129.32 (2C), aromatic $\mathrm{C}-\mathrm{H}$; 134.74 and 134.85, [2-Ph and 3-Ph] $\mathrm{C}_{\mathrm{ipso}} ; 140.39,143.26$, 145.18 and $147.75, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} . \mathrm{m} / \mathrm{z}$ $312\left(M^{+}, \quad 39\right), \quad 283\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad 100\right), \quad 265(14)$, 252(15), 252(15), 105(10), 77(10).

3.20.2. Thermally-promoted insertion of phenylacetyl-

 eneA solution of $27(0.22 \mathrm{~g}, 0.67 \mathrm{mmol})$ and phenylacetylene ($0.28 \mathrm{~g}, 2.67 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 11 h. The reaction mixture was concentrated to give a red oil (0.15 g) which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Attempted purification by PLC afforded 17 bands of similar intensities, none of which were investigated further.

3.20.3. Thermally-promoted insertion of 3-hexyne

Treatment of $27(0.22 \mathrm{~g}, 0.51 \mathrm{mmol})$ with 3-hexyne ($0.26 \mathrm{~g}, 1.84 \mathrm{mmol}$) in refluxing benzene for 24 h afforded a red oil which was purified by flash chromatography to give in order of increasing polarity: (i) a mixture ($1: 1$) (46 mg) of 1,2,3-triethyl-1 H -inden-1-ol (61) and a single diastereoisomer of tricarbonyl-
[(3a,4,5,6,7,7a- η)-1,2,3-triethyl-1 H-inden-1-ol]chromium (50) as a yellow oil. For 50 (Found: $M^{+\cdot}, 352.0768$. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CrO}_{4}$. Calc.: $M, 352.0767$). $\nu_{\max }(\mathrm{KBr}) 3417$ $(\mathrm{OH}), 1962$ and $1886(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. $\delta_{H} 0.56, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.16$ and 1.17 , t , $J 7.5 \mathrm{~Hz}, 3 \mathrm{H}$ each, $2-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.52$, s, $1 \mathrm{H}, 1-\mathrm{OH} ; 1.85-2.51, \mathrm{~m}, 6 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3}, 2-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 5.05$, bt, $J 6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 5.36$, bd, J $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 ; 5.46$, bt, J $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.82$, bd, J $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 . \delta_{c} 7.98,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 13.47$ and 14.23 , $2-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 17.96$ and 18.18, 2$\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 29.55,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 84.90$, $\mathrm{C} 1 ; 83.62,86.55,90.13$ and 94.06, C4, C5, C6 and C7; 116.47 and $118.69, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a}, 136.74$ and 152.36, C 2 and $\mathrm{C} 3 ; 233.38(3 \mathrm{C}), \mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / \mathrm{z} 352\left(\mathrm{M}^{+}, 18\right)$, 296($M-2 \mathrm{CO}, 12$), 268(296-CO, 100), 253(268-CH ${ }_{3}$, $20), 52\left(\mathrm{Cr}^{+}, 32\right)$; (ii) $\mathbf{1 5}$ ($94 \mathrm{mg}, 70 \%$).

A solution of a mixture ($1: 1$) (40 mg) of $\mathbf{5 0}$ and $\mathbf{6 1}$ in diethyl ether (20 ml) was exposed to bright sunlight for 4 h . Work-up in the usual manner and purification (PLC, diethyl ether-hexanes) afforded 61 ($27 \mathrm{mg}, 25 \%$) as a white solid which was recrystallised from diethyl ether as white needles, m.p. $54-56^{\circ} \mathrm{C}$ (distilled at 100 $105^{\circ} \mathrm{C}, 0.03 \mathrm{~mm} \mathrm{Hg}$). (Found: C, 83.1; H, 9.3. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$. Calc.: C, 83.3; H, 9.3\%). (Found: $M^{+}, 216.1516$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$. Calc.: $M, 216.1514$). $\nu_{\max }(\mathrm{KBr}) 3348(\mathrm{OH})$, $1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 0.48, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}, 1-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.16$ and $1.18, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}$ each, $2-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.61, \mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 1.93$ and 2.07, dq, $J 13.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}$ each, $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.24$ and 2.39 , dq, $J 14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}$ each, $2-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 2.46 (9) and $2.47(3), \mathrm{q}, J 7.7 \mathrm{~Hz}, 1 \mathrm{H}$ each, $3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $7.12(9)$, td, $J 7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 7.12(8)$, dd, J 7.1 , $1.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} 7 ; 7.23$, td, J $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 7.31$, dd, $J 7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 . \delta_{c} 7.99,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 13.50$ and $14.24,2-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 17.67$ and 18.44, $2-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 29.17,1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 86.28, $\mathrm{C} 1 ; 118.42,121.40,125.09$ and 128.11, C4, C5, C6 and C7; 139.47, 143.78, 146.60 and 147.74, C2, C3, C 3 a and $\mathrm{C} 7 \mathrm{a} . \mathrm{m} / \mathrm{z} 216\left(M^{+}, 33\right), 187\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, 100), 159(20), 141(10), 128(12), $115(11)$.

3.20.4. Thermally-promoted insertion of dimethyl acetylenedicarboxylate

Treatment of $27(0.20 \mathrm{~g}, 0.46 \mathrm{mmol})$ with dimethyl acetylenedicarboxylate ($0.26 \mathrm{~g}, 1.84 \mathrm{mmol}$) in refluxing benzene for 12 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Filtration and purification by PLC (hexanes-diethyl ether, multiple sweeps) afforded in order of increasing polarity: (i) 3-ethyl-1,2-bismethoxycarbonyl1 H -indene (59) ($25 \mathrm{mg}, 21 \%$) as a white solid which was recrystallised from diethyl ether-hexanes as microneedles, m.p. $85-87^{\circ} \mathrm{C}$. (Found: $M^{+}, 260.1054$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$. Calc.: $\quad M, 260.1049$). $\nu_{\max }(\mathrm{KBr}) 1741$ (non-conjugated $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 1712 (conjugated $\mathrm{CO}_{2} \mathrm{CH}_{3}$),

1609 and $1434 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.27, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.93-3.22, \mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.69$, s, $3 \mathrm{H}, 1-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 3.83, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 4.65, \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H} 1 ; 7.32-7.61, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 13.30$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 19.85,3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 51.43,1-\mathrm{CO}_{2} \mathrm{CH}_{3}$; $52.44,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 55.25, \mathrm{Cl} ; 121.65,123.67,128.08$ and $128.56, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 141.33$ (2C) and $143.56, \mathrm{C} 2, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; 160.04, \mathrm{C} 3$; 165.01, 2$\mathrm{CO}_{2} \mathrm{CH}_{3} ; 170.77,1-\mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z} \quad 260\left(\mathrm{M}^{+}, 37\right)$, $228\left(M-\mathrm{CH}_{3} \mathrm{OH}, \quad 39\right), \quad 213\left(228-\mathrm{CH}_{3}, \quad 9\right), \quad 200(M-$ $\left.\mathrm{HCO}_{2} \mathrm{CH}_{3}, 100\right), 169(47), 142(63), 115(20), 59(20)$; (ii) 1-ethyl-1-hydroxy-2,3-bismethoxycarbonyl-1 H -indene (60) ($22 \mathrm{mg}, 17 \%$) as a clear oil. (Found: M^{+}, 276.1002. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$. Calc.: M, 276.0998). $\nu_{\max }(\mathrm{KBr})$ $3479(\mathrm{OH}), 1724\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1614,1461$ and 1436 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 0.60, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $2.20, \mathrm{q}, J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.01, \mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{OH}$; $3.87, \mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 3.95, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.31-$ $7.47, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 7.94,3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 31.19, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 52.21$ and $52.43,1-\mathrm{CO}_{2} \mathrm{CH}_{3}$ and $2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 85.67, \mathrm{Cl} ; 122.78,123.01,129.05$ and 129.36; C4, C5, C6 and C7; 137.33, 140.53, 141.14 and 147.44, $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; 164.31$ and 164.77, $1-\mathrm{CO}_{2} \mathrm{CH}_{3}$ and $2-\mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z} \quad 276\left(\mathrm{M}^{+}, 10\right)$, 247 $\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}, 18\right), 215(100)$, 187(20).
3.20.5. Thermally-promoted insertion of methyl propenoate
3.20.5.1. Without decomplexation. A nitrogen-degassed solution of $27(1.30 \mathrm{~g}, 2.98 \mathrm{mmol})$ and methyl propenoate ($2.00 \mathrm{ml}, 23.26 \mathrm{mmol}$) in benzene (80 ml) was heated to reflux under positive nitrogen pressure for 23 h . The reaction mixture was diluted with diethyl ether and filtered through Celite. Concentration in vacuo afforded a deep red oil which was purified by flash chromatography on silica gel using hexanes-diethyl ether as eluent to give in order of increasing polarity: (i) 13 ($19 \mathrm{mg}, 3 \%$); (ii) tricarbonyl-[(3a,4,5,6,7,7a- η)-3-ethyl-1 H-indene]chromium (49) ($0.10 \mathrm{~g}, 12 \%$) as a yellow oil. (Found: $M^{+\cdot}, 280.0193 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CrO}_{3}$. Calc.: $M, 280.0193)$. $\nu_{\max }(\mathrm{KBr}) 1954$ and $1867(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O})$, 1666 and $1614 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.26, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.40$, qdt, $J 7.4,1.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.40, \mathrm{t}, J 1.7 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H1})_{2} ; 5.24$, td, J 6.2 , $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 5.28$, td, J 6.3, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.68$, dd, $J 5.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 ; 5.82$, dd, $J 5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 7 ; 6.16, \mathrm{dt}, J 3.9,1.8 \mathrm{H}, 1 \mathrm{H}, \mathrm{H} 2 . \delta_{c} 11.84,3-\mathrm{CH}_{2} \mathrm{CH}_{3}$, 20.27, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 37.86, \mathrm{Cl} ; 86.81,90.39,90.51$ and $90.75, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7,114.33$ and 116.06, C3a and C7a; 129.30, C2; 144.10, C3; 233.82 (3С), $\mathrm{Cr}(\mathrm{CO})_{3}$. $m / z 280\left(M^{+\cdot}, 20\right), 252(M-\mathrm{CO}, 3), 224(252-\mathrm{CO}, 13)$, $196(224-\mathrm{CO}, 91), 52\left(\mathrm{Cr}^{+}, 100\right)$. A solution of complex 49 ($90 \mathrm{mg}, 0.32 \mathrm{mmol}$) in diethyl ether (30 ml) was exposed to bright sunlight for 3 h . Concentration and purification by PLC afforded 3-ethyl-1 H -indene (56)
($22 \mathrm{mg}, 48 \%$) as a clear oil. (Found: $M^{+\cdot}, 144.0933$. $\mathrm{C}_{11} \mathrm{H}_{12}$. Calc.: $M, 144.0939$). $\nu_{\max }(\mathrm{KBr}) 3066,3018$, 2966 and $2935(\mathrm{C}-\mathrm{H}), 1461$ and $1398 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H}$ $1.26, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.49-2.63, \mathrm{~m}, 2 \mathrm{H}$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.31, \mathrm{td}, J 1.7,1.7 \mathrm{~Hz}, 2 \mathrm{H},(\mathrm{H} 1)_{2} ; 6.20$, tt , $J 1.8,1.7 \mathrm{~Hz}, \mathrm{H} 2 ; 7.19$, td, J $7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$; 7.29 , btd, $J 7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 7.36$, bdd, $J 7.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 4 ; 7.49$, bdd, J $7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 . \delta_{c}$ 12.36, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 20.77,3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 37.60, \mathrm{Cl}$; $118.83, \mathrm{C} 2 ; 123.68,124.42,125.92$ and $126.69, \mathrm{C} 4, \mathrm{C} 5$, C6 and C7; 144.55, 145.51 and 146.20, C3, C3a and C7a. $m / z 144\left(M^{+}, 45\right), 129\left(M-\mathrm{CH}_{3}, 100\right), 115(M-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}, 30$); (iii) tricarbonyl[(3a,4,5,6,7,7a- η)-3-ethyl-2-methoxycarbonyl-1 H-indene]chromium (51) ($0.16 \mathrm{~g}, 16 \%$) which was recrystallised from diethyl ether as orange globular crystals, m.p. $139-141^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 56.8 ; \mathrm{H}, 3.9 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{CrO}_{5}$. Calc.: $\mathrm{C}, 55.8 ; \mathrm{H}$, 4.2%). (Found: $M^{+}, 338.0243 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{CrO}_{5}$. Calc.: M, 338.0246). $\nu_{\max }(\mathrm{KBr}) 1966$ and $1888(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1715$ $\mathrm{cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) . \delta_{H} 1.27, \mathrm{t}, J 7.6 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 2.80-2.95, m, 2H, 3- $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.71-3.74, \mathrm{~m}, 2 \mathrm{H}$, $(\mathrm{H1})_{2} ; 3.82, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 5.19$, bt, J $6.2 \mathrm{~Hz}, 1 \mathrm{H}$, H5; 5.46, bt, J $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.73$, bd, $J 6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 4 ; 5.86, \mathrm{bd}, \mathrm{J} 6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 . \delta_{c} 13.24,3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $19.58,3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 38.72, \mathrm{C} 1 ; 51.50,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 88.32$, 88.94 (2C) and $92.96, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and C7; 112.25 and 113.97, C3a and $\mathrm{C} 7 \mathrm{a} ; 130.03, \mathrm{C} 2 ; 150.88, \mathrm{C} 3 ; 164.23$, $2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 232.67$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . \mathrm{m} / z 338\left(\mathrm{M}^{+}\right.$, 34), $307\left(M-\mathrm{OCH}_{3}, 4\right), 282(M-2 \mathrm{CO}, 18), 254(282-$ CO, 100), 226 (28), 196(38), 171(52), 128(20), 52(Cr^{+}, 87); (iv) a mixture (0.20 g) of two diastereoisomers of tricarbonyl[(3a,4,5,6,7,7a- η)-3-ethyl-2,3-dihydro-2-methoxymethyl- $1 H$-inden-1-ol]chromium, 15, and tricarbonyl[methyl ($1,2,3,4,5,6-\eta$)-4-methyl-5-oxo-5phenylpentanoate]chromium (35). A solution of this mixture (0.20 g) in diethyl ether (50 ml) was exposed to bright sunlight for 3 h . The reaction mixture was filtered, concentrated in vacuo and purified by PLC to give in order of increasing polarity: (a) 3 ($9 \mathrm{mg}, 2 \%$); (b) methyl 4 -methyl-5-oxo-5-phenylpentanoate (32) (8 $\mathrm{mg}, 1 \%$) as a clear oil. (Found: $M^{+\cdot}$, 220.1101. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$. Calc.: $M, 220.1099$). $\nu_{\max }(\mathrm{KBr}) 1736$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1682\left(\mathrm{R}_{2} \mathrm{CO}\right), 1597,1579$ and $1448 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.21, \mathrm{~d}, J 6.5 \mathrm{~Hz}, 3 \mathrm{H}, 4-\mathrm{CH}_{3} ; 1.70-1.90$, $2.05-2.50$ and $3.48-3.65, \mathrm{~m}, 5 \mathrm{H},(\mathrm{H} 2)_{2},(\mathrm{H} 3)_{2}$ and H 4 ; $3.65, \mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.41-7.61, \mathrm{~m}, 3 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2}$ and $\mathrm{H}_{\text {para }} ; 7.97$, bd, $J 7.5 \mathrm{~Hz}, 2 \mathrm{H}$, ($\left.\mathrm{H}_{\text {ortho }}\right)_{2} . \delta_{c} 17.36$, $4-\mathrm{CH}_{3} ; 28.27, \mathrm{C} 2 ; 31.48, \mathrm{C} 2 ; 39.55, \mathrm{C} 4 ; 51.55$, $\mathrm{CO}_{2} \mathrm{CH}_{3} ; 128.31$ (2C), $\mathrm{C}_{\text {ortho }} ; 128.67$ (2C), $\mathrm{C}_{\text {meta }}$; $133.04, \mathrm{C}_{\text {para }} ; 136.34, \mathrm{C}_{\text {ipso }} ; 173.74, \mathrm{CO}_{2} \mathrm{CH}_{3} ; 203.52$, C5. $m / z 220\left(M^{+-}, 10\right), 205\left(M-\mathrm{CH}_{3}, 3\right), 189(M-$ $\left.\mathrm{OCH}_{3}, 10\right), 105(100), 77(30)$; (c) $(1 \beta, 2 \beta)$-1-ethyl-2,3-dihydro-2-methoxycarbonyl-1 H -inden-1-ol (42) (30 $\mathrm{mg}, 5 \%$) as a clear oil. (Found: $\mathrm{C}, 70.8 ; \mathrm{H}, 7.3$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$. Calc.: C, $70.9 ; \mathrm{H}, 7.3 \%$). (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$, 202.0993. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$. Calc.: $M-\mathrm{H}_{2} \mathrm{O}, 202.0994$).
(Found: $M^{+\cdot}-\mathrm{CH}_{2} \mathrm{CH}_{3}$, 191.0708. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}$. Calc.: $\left.M-\mathrm{CH}_{2} \mathrm{CH}_{3}, 191.0708\right)$. $\nu_{\max }(\mathrm{KBr}) 3480(\mathrm{OH}), 1735$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1459$ and $1438 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 0.89, \mathrm{t}, J$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.91-2.20, \mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $3.00-3.20, \mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.13, \mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 3.25-3.45$, $\mathrm{m}, \mathrm{H} 2 \alpha$ and $\mathrm{H} 3 \alpha ; 3.75, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.20-7.35$, $\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 8.99,1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; $31.98,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 33.37, \mathrm{C} 3 ; 50.70,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 51.89$, $\mathrm{C} 2 ; 84.72, \mathrm{Cl} ; 123.21,124.76,127.12$ and 128.69, C4, $\mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 141.16$ and $144.75, \mathrm{C} 3 \mathrm{a}$ and C 7 a ; $174.19,2-\mathrm{CO}_{2} \mathrm{CH}_{3} . m / z \quad 202\left(M-\mathrm{H}_{2} \mathrm{O}, 5\right), 191(M-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad 73\right), \quad 159\left(191-\mathrm{CH}_{3} \mathrm{OH}, 100\right), \quad 143(60)$, 131(53), 103(25), 77(15); (d) ($1 \beta, 2 \alpha$)-1-ethyl-2,3-di-hydro-2-methoxycarbonyl-1H-inden-1-ol (43) (15 mg , 3%) as a clear oil. (Found: $M^{+}-\mathrm{H}_{2} \mathrm{O}, 202.0991$. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$. Calc.: $M-\mathrm{H}_{2} \mathrm{O}, 202.0994$). (Found: $\mathrm{M}^{+}{ }_{-}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$, 191.0708. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3}$. Calc.: $M-\mathrm{CH}_{2} \mathrm{CH}_{3}$, 191.0707). $\nu_{\max }(\mathrm{KBr}) 3484(\mathrm{OH}), 1736\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 1464 and $1438 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 0.86, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.68, \mathrm{q}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.38$, bs, $1 \mathrm{H}, 1-\mathrm{OH}, 3.04$, dd, $J 15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.26$, dd, $J 15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.40$, dd, $J 10.2,7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2 \beta ; 3.81, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.22-7.35, \mathrm{~m}$, $4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 7.61,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 30.19$, $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 51.83,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 58.76, \mathrm{C} 2 ; 84.90, \mathrm{C} 1$; $123.95,124.74,126.62$ and 128.22 ; C4, C5, C6 and C7; 139.28 and $144.82, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; 172.87,2-\mathrm{CO}_{2} \mathrm{CH}_{3}$. $m / z \quad 202\left(M-\mathrm{H}_{2} \mathrm{O}, \quad 3\right), \quad 191\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad 69\right)$, $159\left(191-\mathrm{CH}_{3} \mathrm{OH}, 100\right), 143(10), 103(22), 77(20)$; (v) the α diastereoisomer of tricarbonyl-[(1 $\beta, 2 \beta)$ -(3a,4,5,6,7,7a,- η)-1-ethyl-2,3-dihydro-2-methoxycarbo-nyl-1 H-inden-1-ol]chromium (37) ($0.57 \mathrm{~g}, 54 \%$) as an orange solid which was recrystallised from diethyl ether as orange micro prisms, m.p. $158-164^{\circ} \mathrm{C}$. (Found: C, $53.8 ; \mathrm{H}, 4.3 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CrO}_{6}$. Calc.: C, $53.9 ; \mathrm{H}, 4.5 \%$). (Found: $M^{+}, 356.0348 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CrO}_{6}$. Calc.: M, 356.0352). $\nu_{\max }(\mathrm{KBr}) 3456(\mathrm{OH}), 1967,1898$ and $1888(\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}), 1716\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $1438 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.10, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.98$, dq, $J 15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.13$, dq, $J 15.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.00$, dd, $J 14.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 3 \beta ; 3.19$, dd, $J 10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \alpha ; 3.25$, dd, J $14.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.80, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 4.41$, s, $1 \mathrm{H}, 1-\mathrm{OH} ; 5.09$, td, J $6.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 ; 5.23$, bd, $J 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4 ; 5.52$, td, $J 6.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 ; 5.73$, bd, $J 6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 . \delta_{c} 8.40,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 32.15, \mathrm{C} 3$; $33.48,1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 49.01, \mathrm{C} 2 ; 52.44,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 82.31$, $\mathrm{C} 1 ; 86.05,87.98,91.52$ and $95.64, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and C 7 ; $114.24(2 \mathrm{C}), \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; 174.65,2-\mathrm{CO}_{2} \mathrm{C}_{\mathrm{H}} 3 ; 232.53$ (3C), $\mathrm{Cr}(\mathrm{CO})_{3} . m / z 356\left(M^{+}, 33\right), 338\left(M-\mathrm{H}_{2} \mathrm{O}, 3\right)$, $324\left(M-\mathrm{CH}_{3} \mathrm{OH}, 2\right), 300(M-2 \mathrm{CO}, 8), 272(300-\mathrm{CO}$, 73), 257(100), 239(14), 226(15), 212(14), 196(20), $129(20), 52\left(\mathrm{Cr}^{+}, 79\right)$.
3.20.5.2. With decomplexation. Treatment of $27(0.10 \mathrm{~g}$, 0.23 mmol) with methyl propenoate $(0.15 \mathrm{ml}, 0.17$
mmol) in refluxing benzene for 10.5 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 2 h . Filtration and purification by PLC (silica gel, hexanes-diethyl ether, multiple sweeps) afforded in order of increasing polarity: (i) 3-ethyl-2-methoxycarbonyl-1 H -indene (57) ($1 \mathrm{mg}, 3 \%$) as a clear oil. (Found: $\mathrm{C}, 77.1$; $\mathrm{H}, 6.9 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$. Calc.: $\mathrm{C}, 77.2$; $\mathrm{H}, 7.0 \%$). (Found: $M^{+\cdot}$, 202.0993. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$. Calc.: $M, 202.0994) . \nu_{\max }(\mathrm{KBr}) 1707\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1600,1576$ and $1435 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.24, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.07$, bq, $J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.66$, bs, $2 \mathrm{H},(\mathrm{H1})_{2} ; 3.83, \mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.30-7.58$, m, $4 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 13.46,3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 19.80$, $3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 38.76, \mathrm{Cl} ; 51.12,2-\mathrm{CO}_{2} \mathrm{CH}_{3} ; 121.16$, 124.10, 127.49 and 128.54, C4, C5, C6, and C7, 128.57, $\mathrm{C} 2 ; 143.84$ and 144.15, C3a and C7a; 157.71, C3; $165.99,2-\mathrm{CO}_{2} \mathrm{CH}_{3} . m / z \quad 202\left(M^{+}, 67\right), 171\left(M^{+}-\right.$ $\left.\mathrm{OCH}_{3}, 28\right), 143(100), 128(74), 115(35)$; (ii) $42(36 \mathrm{mg}$, 71%); (iii) 43 ($13 \mathrm{mg}, 25 \%$).

3.20.6. Thermally-promoted insertion of tert-butyl propenoate

Treatment of $27(0.20 \mathrm{~g}, 0.46 \mathrm{mmol})$ with tert-butyl propenoate ($0.20 \mathrm{ml}, 0.15 \mathrm{mmol}$) in refluxing benzene for 11.5 h afforded a red oil which was redissolved in diethyl ether and exposed to bright sunlight for 3 h . Filtration and purification by PLC (hexanes-diethyl ether, multiple sweeps) afforded in order of increasing polarity: (i) 3-ethyl-2-(1,1-dimethylethoxycarbonyl)1 H -indene (58) ($12 \mathrm{mg}, 11 \%$) as a clear oil (distilled at $100-105^{\circ} \mathrm{C}, 0.04 \mathrm{~mm} \mathrm{Hg}$). (Found: $\mathrm{C}, 78.4 ; \mathrm{H}, 8.0$. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$. Calc.: C, 78.7; H, 8.3\%). (Found: M^{+}, 244.1466. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$. Calc.: $M, 244.1463$). $\nu_{\max }(\mathrm{KBr})$ $1698\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1600,1574$ and $1456 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.24, \mathrm{t}, J 7.5 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.57, \mathrm{~s}$, $9 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 3.02$, bq, $J 7.5 \mathrm{~Hz}, 2 \mathrm{H}, 3-$ $\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3.61$, bs, $2 \mathrm{H},(\mathrm{H1})_{2} ; 7.26-7.52, \mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4$, $\mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 13.55,3-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 19.83, 3$\mathrm{CH}_{2} \mathrm{CH}_{3} ; 28.40(3 \mathrm{C}), 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 39.04, \mathrm{Cl}$; $80.18,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 120.96,124.04,126.41$ and 127.22, C4, C5, C6, and C7; 130.97, C2; 143.79 and 144.54, C 3 a and $\mathrm{C} 7 \mathrm{a} ; 155.70, \mathrm{C} 3 ; 165.23,2-$ $\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \quad m / z \quad 244\left(M^{+}, \quad 28\right), \quad 188(M-$ $\left.\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 100\right), \quad 171(38), \quad 143(94), \quad 129(55)$, $115(22), 57\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}^{3}\right.$, 47); (ii) 1,1-dimethylthyl 4-methyl-5-oxo-5-phenylpentanoate (33) ($18 \mathrm{mg}, 15 \%$) as a clear oil (distilled at $105-110^{\circ} \mathrm{C}, 0.05 \mathrm{~mm} \mathrm{Hg}$). (Found: C, 72.9; H, 8.2. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. Calc.: C, 73.3; H, 8.5\%). (Found: $M^{+}, 262.1586 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. Calc.: M, 262.1569). $\nu_{\text {max }}(\mathrm{KBr}) 1728\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1683\left(\mathrm{R}_{2} \mathrm{CO}\right)$, 1597, 1580 and $1448 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$. $\delta_{H} 1.21, \mathrm{~d}, J 6.5$ $\mathrm{Hz}, 3 \mathrm{H}, 4 \mathrm{CH}_{3} ; 1.42, \mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 1.65-1.83$ and $2.02-2.35, \mathrm{~m}, 4 \mathrm{H},(\mathrm{H} 2)_{2}$, and $(\mathrm{H} 3)_{2} ; 3.57$, sextet, J $6.8 \mathrm{~Hz}, \mathrm{H} 4 ; 7.46, \mathrm{bt}, J 7.1 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {meta }}\right)_{2} ; 7.56, \mathrm{bt}, J$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {рara }} ; 7.96$, bd, $J 7.3 \mathrm{~Hz}, 2 \mathrm{H},\left(\mathrm{H}_{\text {ortho }}\right)_{2} . \delta_{c}$ $17.31,4-\mathrm{CH}_{3} ; 28.04(3 \mathrm{C}), \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 28.53, \mathrm{C} 3$;
32.98, $\mathrm{C} 2 ; 39.54, \mathrm{C} 4 ; 80.28, \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 128.29$ (2C), C ortho $; 128.64$ (2C), C meta $; 132.97, \mathrm{C}_{\text {para }} ; 136.45$, $\mathrm{C}_{\text {ipso }} ; 172.67, \quad \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 203.77$, $\mathrm{C} 5 . \mathrm{m} / \mathrm{z}$ $262\left(M^{+}, 1\right), 206\left(M-\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 3\right), 189(27)$, $\left.105(100), 77(30), 57\left(\mathrm{C}_{(} \mathrm{CH}_{3}\right)_{3}^{+}, 32\right)$; (iii) $(1 \beta, 2 \beta)-1-$ ethyl-2,3-dihydro-2-(1,1-dimethylethoxycarbonyl)-1 H -inden-1-ol (46) ($48 \mathrm{mg}, 40 \%$) as a white solid which was recrystallised from hexanes-dichloromethane as white needles, m.p. $86-88^{\circ} \mathrm{C}$. (Found: C, $73.3 ; \mathrm{H}, 8.5$. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. Calc.: C, $73.3 ; \mathrm{H}, 8.3 \%$). (Found: M^{+}, $262.1800 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$. Calc.: $M, 262.1807$). $\nu_{\max }(\mathrm{KBr})$ $3427(\mathrm{OH}), 1716\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1460$ and $1368 \mathrm{~cm}^{-1}$ (C=C). $\delta_{H} 0.90, \mathrm{t}, J 7.4 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.49$, s, $9 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 1.96$, dq, J $13.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.08$, dq, $J 13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 3.08 , dd, J 13.0, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.20$, dd, $J 7.3,5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2 \alpha ; 3.31$, dd, $J 12.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.41$, $\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 7.20-7.32, \mathrm{~m}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c}$ 8.97, $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 28.12$ (3C), $2-\mathrm{CO}_{2} \mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{3} ; 32.07 \text {, }}$ $1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 32.07, \mathrm{C} 3 ; 51.31, \mathrm{C} 2 ; 81.37$, 2$\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 84.44, \mathrm{C} 1 ; 123.13,124.70,127.03$ and $128.51, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and $\mathrm{C} 7 ; 141.29$ and $145.28, \mathrm{C} 3 \mathrm{a}$ and $\mathrm{C} 7 \mathrm{a} ; \quad 172.40, \quad 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . \quad m / z\left(\mathrm{NH}_{3}\right)$ $278\left(M^{+}-\mathrm{H}+\mathrm{NH}_{3}, 4\right), 262(M, 8), 245(M-\mathrm{OH}, 47)$, 233($\left.M-\mathrm{CH}_{2} \mathrm{CH}_{3}, ~ 8\right), 194(37), 189(80)$, 177(100), 159(82), 145(78), 131(25), 115(12), 103(11), 77(10); (iv) ($1 \beta, 2 \alpha$)-1-ethyl-2,3-dihydro-2-methoxycarbonyl1 H -inden-1-ol (47) ($17 \mathrm{mg}, 14 \%$) as a clear oil. (Found: $M^{+-}-\mathrm{CH}_{2} \mathrm{CH}_{3}$, 233.1177. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}$. Calc.: $M-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}, 233.1178$). $\nu_{\max }(\mathrm{KBr}) 3444(\mathrm{OH}), 1722$ $\left(\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 0.85, \mathrm{t}, J 7.4$ $\mathrm{Hz}, 3 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 1.54, \mathrm{~s}, 9 \mathrm{H}, 2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 2.42$, $\mathrm{s}, 1 \mathrm{H}, 1-\mathrm{OH} ; 1.74, \mathrm{q}, J 7.4 \mathrm{~Hz}, 2 \mathrm{H}, 1-\mathrm{CH}_{2} \mathrm{CH}_{3} ; 2.99$, dd, $J 15.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \beta ; 3.16$, dd, $J 15.4,10.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 3 \alpha ; 3.30$, dd, J $10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \beta$; $7.20-7.38, \mathrm{~m}, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$ and $\mathrm{H} 7 . \delta_{c} 7.75,1-\mathrm{CH}_{2} \mathrm{CH}_{3}$; 28.23 (3C), 2- $\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 30.26, \mathrm{C} 3 ; 31.97$, 1$\mathrm{CH}_{2} \mathrm{CH}_{3} ; 59.42, \mathrm{C} 2 ; 81.31,2-\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 84.70$, $\mathrm{C} 1 ; 123.92,124.69,126.49$ and 128.05, C4, C5, C6 and $\mathrm{C} 7 ; 139.49$ and 144.93, C3a and C7a; 171.68, 2$\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} . m / z\left(\mathrm{NH}_{3}\right) \quad 278\left(M^{+}-\mathrm{H}+\mathrm{NH}_{3}, \quad 18\right)$, $262(M, 11), 245(M-\mathrm{OH}, 40), 233\left(M-\mathrm{CH}_{2} \mathrm{CH}_{3}, 7\right)$, 206(10), 194(40), 189(73), 177(100), 159(86), 145(82), 131(22).

Attempted thermally-promoted insertion reactions between 27 and vinyl acetate or ethoxyvinyl ether afforded after decomplexation and purification 3 (70$85 \%$) as the only isolable product.

3.20.7. Chemically-promoted coupling with $\mathrm{Me}_{3} \mathrm{NO}$ and methyl propenoate

A nitrogen-degassed solution of $27(0.20 \mathrm{~g}, 0.23$ mmol) in acetonitrile (5 ml) was treated with trimethylamine N -oxide ($52 \mathrm{mg}, 0.36 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. The red solution slowly deepened in colour. The reaction mixture was
stirred at ambient temperature for 5 min and was then treated with methyl propenoate $(0.15 \mathrm{ml}, 1.7 \mathrm{mmol})$. After 180 h at room temperature the reaction mixture was diluted with diethyl ether, filtered and concentrated. It was then redissolved in diethyl ether and exposed to bright sunlight for 3 h . Work-up and purification (PLC, diethyl ether-hexanes, multiple sweeps) afforded 3 (40 $\mathrm{mg}, 74 \%$).
3.21. Coupling reactions of tricarbonyll($((1,2,3,4,5,6-$ η)-2-(1-oxopropyl)phenyl)-C,O)tricarbonylmanganese(triphenylphosphine)]chromium (29)

3.21.1. Thermally-promoted insertion of methyl propenoate

A solution of $29(0.20 \mathrm{~g}, 0.30 \mathrm{mmol})$ and methyl propenoate ($0.15 \mathrm{ml}, 0.17 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 23 h . The reaction mixture was diluted with diethyl ether and filtered to give 29 as a red oil ($0.19 \mathrm{~g}, 96 \%$).

3.21.2. Thermally-promoted coupling with tert-butyl propenoate in toluene

A solution of $29(0.20 \mathrm{~g}, 0.30 \mathrm{mmol})$ and tert-butyl propenoate ($0.15 \mathrm{ml}, 0.17 \mathrm{mmol}$) in toluene (20 ml) was heated to reflux under positive nitrogen pressure for 24 h. The reaction mixture was diluted with diethyl ether, filtered and purified (PLC, diethyl ether-hexanes, multiple sweeps) to give: (i) triphenylphosphine (43 mg); (ii) 57 ($6 \mathrm{mg}, 8 \%$); (iii) 3 ($17 \mathrm{mg}, 41 \%$); (iv) 33 (30 mg , 37\%).

3.21.3. Chemically-promoted coupling with $\mathrm{Me}_{3} \mathrm{NO}$ and methyl propenoate

A nitrogen-degassed solution of $29(0.20 \mathrm{~g}, 0.30$ mmol) in acetonitrile (5 ml) was treated with trimethylamine N -oxide ($35 \mathrm{mg}, 0.46 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. No apparent colour change was observed. The reaction mixture was stirred at ambient temperature for 5 min and was then treated with methyl propenoate ($0.15 \mathrm{ml}, 0.17 \mathrm{mmol}$). After 200 h at room temperature the reaction mixture was diluted with diethyl ether filtered and purified (PLC, diethyl ether, multiple sweeps) to give: (i) triphenylphosphine (42 mg); (ii) 3 ($33 \mathrm{mg}, 80 \%$); (iii) 32 (7 $\mathrm{mg}, 10 \%$).
3.22. Coupling reactions of tetracarbonyl((2-(1-oxopropyl)phenyl)-C,Olmanganese (24)

3.22.1. Thermally-promoted insertion of phenylacetyl-

 eneA solution of $24(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ and phenylacetylene ($0.28 \mathrm{~g}, 2.67 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 11 h. The reaction mixture was concentrated to give a red
oil (0.15 g). Attempted purification by PLC afforded 15 bands of similar intensities, none of which were investigated further.

3.22.2. Thermally-promoted insertion of diphenylacetylene

A solution of $24(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ and diphenylacetylene ($0.48 \mathrm{~g}, 2.67 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 11 h. The reaction mixture was concentrated and purified (PLC, diethyl ether-hexanes) to give 55 ($0.19 \mathrm{~g}, 92 \%$).

3.22.3. Thermally-promoted insertion of 3-hexyne

A solution of $24(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ and 3-hexyne $(0.22 \mathrm{~g}, 2.67 \mathrm{mmol})$ in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 12.5 h . The reaction mixture was concentrated and purified (PLC, diethyl ether-hexanes) to give $61(0.13 \mathrm{~g}, 92 \%)$.

3.22.4. Thermally-promoted insertion of methyl propenoate

A solution of $24(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ and methyl propenoate ($0.15 \mathrm{ml}, 1.75 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 11.5 h . The reaction mixture was concentrated and purified (PLC, diethyl ether-hexanes) to give in order of increasing polarity: (i) 57 ($40 \mathrm{mg}, 30 \%$); (ii) an unidentified compound (19 mg); (iii) 42 ($3 \mathrm{mg}, 2 \%$); (iv) 43 ($48 \mathrm{mg}, 33 \%$).

3.22.5. Thermally-promoted insertion of tert-butyl propenoate

A solution of $24(0.20 \mathrm{~g}, 0.67 \mathrm{mmol})$ and tert-butyl propenoate ($0.15 \mathrm{ml}, 1.75 \mathrm{mmol}$) in benzene (20 ml) was heated to reflux under positive nitrogen pressure for 11 h . The reaction mixture was concentrated and purified (PLC, diethyl ether-hexanes) to give in order of increasing polarity: (i) 58 ($60 \mathrm{mg}, 37 \%$); (ii) 46 (58 mg , 33%); (iii) 47 ($21 \mathrm{mg}, 12 \%$).

3.22.6. Chemically-promoted coupling with $\mathrm{Me}_{3} \mathrm{NO}$ and methyl propenoate

A nitrogen-degassed solution of $24(0.20 \mathrm{~g}, 0.67$ mmol) in acetonitrile (5 ml) was treated with trimethylamine N -oxide ($75 \mathrm{mg}, 1.00 \mathrm{mmol}$) at room temperature under a nitrogen atmosphere. A deep red solution formed immediately. The reaction mixture was stirred at ambient temperature for 5 min and was then treated with methyl propenoate $(0.15 \mathrm{ml}, 0.17 \mathrm{mmol})$. After 24 h at room temperature the reaction mixture was diluted with diethyl ether, filtered, and purified (PLC, diethyl ether, multiple elution) to give in order of increasing polarity: (i) methyl 3-[2-((1-oxopropyl)phenyl)]propanoate (34) ($22 \mathrm{mg}, 15 \%$) as a clear oil (distilled at $100-105^{\circ} \mathrm{C}, 0.05 \mathrm{~mm} \mathrm{Hg}$). (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, 7.1$. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$. Calc.: $\mathrm{C}, 70.9 ; \mathrm{H}, 7.3 \%$). (Found: M^{+},
220.1100. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$. Calc.: $M^{+\cdot}, 220.1099$). $\nu_{\max }(\mathrm{KBr})$ $1739\left(\mathrm{RCO}_{2} \mathrm{CH}_{3}\right), 1689\left(\mathrm{R}_{2} \mathrm{CO}\right), 1600,1573$ and 1437 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) . \delta_{H} 1.20, \mathrm{t}, J 7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{3}$; 2.66 , bt, $J 7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 2.93, \mathrm{q}, J$ $7.2 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{COCH} \mathrm{CH}_{3} ; \quad 3.65, \quad \mathrm{~s}, \quad 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 7.24-7.46, \mathrm{~m}, 3 \mathrm{H}$ and $7.61-7.67$, $\mathrm{m}, 1 \mathrm{H}$, aromatic $\mathrm{H} . \delta_{c} 8.36, \mathrm{COCH}_{2} \mathrm{CH}_{3} ; 29.47$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 34.72, \quad \mathrm{COCH}_{2} \mathrm{CH}_{3} ; 35.77$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 51.49, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 126.33$, $128.53,131.28$ and 131.32, aromatic $\mathrm{CH} ; 137.95$ and $140.41, \mathrm{C}_{\text {ipso }} ; 173.47, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3} ; 204.87$, $\mathrm{COCH}_{2} \mathrm{CH}_{3} . \mathrm{m} / \mathrm{z} 220\left(M^{+}, 20\right), 202\left(M-\mathrm{H}_{2} \mathrm{O}, 3\right)$, 191($\left.M-\mathrm{CH}_{2} \mathrm{CH}_{3}, 45\right), 189\left(M-\mathrm{OCH}_{3}, 13\right), 163(23)$, 159(50), 145(10), 143(20), 131(100), 103(30), 91(22), $77(24)$; (ii) 42 ($66 \mathrm{mg}, 45 \%$); (iii) 43 ($34 \mathrm{mg}, 23 \%$).

References

[1] T.P. Poeth, P.G. Harrison, T. Veach Long, II, B.R. Willeford and J.J. Zuckerman, Inorg. Chem., 10 (1971) 522.
[2] A.D. Hunter, D. Ristic-Petrovic and J.L. McLernon, Organometallics, 11 (1992) 864.
[3] J. Li, A.D. Hunter, R. McDonald, B.D. Santarsiero, S.G. Bott and J.L. Atwood, Organometallics, 11 (1992) 3050.
[4] P.H. van Rooyen, M. Schindehutte and S. Lotz, Organometallics, II (1992) 1104.
[5] S. Lotz, M. Schindehutte and P.H. van Rooyen, Organometallics, II (1992) 629.
[6] T.A. Waldbach, P.H. van Rooyen and S. Lotz, Angew. Chem. Int. Ed. Engl., 32 (1993) 710.
[7] T.B. Rauchfuss, Prog. Inorg. Chem., 39 (1991) 259.
[8] M.I. Bruce, B.L. Goodall and F.g.A. Stone, J. Organomet. Chem., 60 (1973) 343.
[9] R. Davis and L.A.P. Kane-Maguire, in G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Vol. 3, Pergamon, Oxford, 1982, Chapter 26.
[10] J.M. Cooney, L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 336 (1987) 293.
[11] J.M. Cooney, L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 338 (1988) 81.
[12] J.M. Cooney, L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 349 (1988) 197.
[13] N.P. Robinson, L. Main and B.K. Nicholson, J. Organomet. Chem., 349 (1988) 209.
[14] L.S. Liebeskind, J.R. Gasdaska and J.S. McCallum, J. Org. Chem., 54 (1989) 669.
[15] L.S. Liebeskind, S.A. Johnson and J.S. McCallum, Tetrahedron Lett., 31 (1990) 4397.
[16] R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem.. 425 (1992) 59.
[17] R.C. Cambie, M.R. Metzler, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 429 (1992) 59.
[18] R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 426 (1992) 213.
[19] R.C. Cambie, M.R. Metzler, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 429 (1992) 41.
[20] R.C. Cambie, M.R. Metzler, C.E.F. Rickard, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 431 (1992) 177.
[21] W.E. Silverthom, Adv. Organomet Chem., 13 (1975) 48.
[22] L.J. Bellamy and R.J. Pace, Spectrochimica, 19 (1963) 1831.
[23] W.R. Jackson, I.D. Rae and M.G. Wong, Aust. J. Chem., 37 (1984) 1563.
[24] T.E. Bitterwolf, Polyhedron, 7 (1988) 1377.
[25] G. Barbieri and R. Benassi, Synth. React. Inorg. Met. Org. Chem., 4 (1974) 545.
[26] A.M. Weidler, B. Mathiasson and G. Bergson, Ark. Kemi, 21 (1963) 187.
[27] A.M. Weidler, Acta Chem. Scand., 17 (1963) 2724.
[28] G.M. Sheldrick, SHElXS-86, Institut für Anorganische Chemie, Universität Göttingen, Germany, 1986.
[29] G.M. Sheldrick, SHELXL-93, Institut für Anorganische Chemie, Universität Göttingen, Germany, 1993.
[30] R.C. Cambie, P.S. Rutledge, M. Tercel and P.D. Woodgate, J. Organomet. Chem., 315 (1986) 171.
[31] R.C. Cambie, G.R. Glark, S.R. Gallagher, P.S. Rutledge, M.J.

Stone and P.D. Woodgate, J. Organomet. Chem., 342 (1988) 315.
[32] M. Sulzbacher, E. Bergmann and E.R. Pariser, J. Am. Chem. Soc., 70 (1948) 2827.
[33] R. Schreiner and A.B. Ellis, J. Am. Chem. Soc., 104 (1982) 3380.
[34] S. Toma, P. Hrnciar, M. Hudecek and G.K. Magomedov, Coll. Czech. Chem. Commun., 56 (1991) 1477.
[35] L. Operti, G.A. Vaglio, J.R. Gord and B.S. Freiser, Organometallics, 10 (1991) 104.
[36] H.J. Haupt, G. Lohmann and U. Floerke, Z. Anorg. Allg. Chem., 103 (1985) 526.

[^0]: * Corresponding author.

